Solar conversion of CO₂, using a photocatalyst in the presence of water, has attained considerable attention due to added value of the process in terms of both reduction of an environmental pollutant and production of valuable synthetic chemicals. Room temperature fabrication of porous anodic alumina (PAA), for sufficiently low time, facilitates the synthesis of self-withstanding PAA with a middle layer of aluminum. Nanoporous reduced graphene oxide (RGO), deposited on the pore walls of PAA, with subsequent deposition of cadmium sulfide (CdS) as photocatalyst over it, and efficiently enhances the photocatalytic reduction of CO₂. Morphological, structural and optical characterizations of the catalyst are executed using field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), electron dispersive X-spectroscopy (EDX) and UV-Vis absorption spectroscopy methods. Continuous photocatalytic reduction of CO₂ was carried out using flat sheet reactors and a compound parabola as the solar reflector. Semiconducting CdS nanorods, grown over PAA support with conducting RGO, show enhanced photocatalytic reduction of CO₂ to 153.8 mol/g/hr of CH₃OH with higher photocatalytic stability than CdS alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16817 | DOI Listing |
Nano Lett
January 2025
Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada.
Semiconductor nanowires have become emerging photocatalysts in artificial photosynthesis processes for solar fuel production. For reduction reactions, semiconductor photocatalysts with high reducing powers are highly desirable, especially for chemicals that are extremely difficult to reduce. This study introduces a new semiconductor photocatalyst, scandium (Sc)-III-nitrides, which have higher reducing powers than all conventional semiconductor photocatalysts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.
In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.
View Article and Find Full Text PDFDalton Trans
January 2025
Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!