In the present work, ZnO nanorods and ZnO/GO/CNT nanocomposite have been prepared by microwave assisted method using various time of incorporation of GO/CNT. The structural and optical characterizations were performed by X-ray diffraction (XRD), Scanning electron microscope (SEM), UV-Visible spectrometer (UV-Vis) and Photoluminescence (PL). The XRD data showed that the most intense peak at 36° belong to (101) plane of ZnO nanorods. SEM results showed the formation of nano rods assembled in flower like structure. UV spectra shows that the samples absorb ultraviolet light and had a band gap value of 3.1-3.2 eV. The PL spectra showed the lowest PL intensity band for ZnO/GO/CNT-A. Higher photocatalytic degradation of 91% was determined in ZnO/GO/CNT composite when GO/CNT was added at the end of the procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16836DOI Listing

Publication Analysis

Top Keywords

zno nanorods
12
influence positioning
4
positioning incorporated
4
incorporated carbon
4
carbon nanostructures
4
nanostructures morphology
4
morphology photocatalytic
4
photocatalytic activity
4
activity microwave
4
microwave synthesized
4

Similar Publications

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Potential of Zinc Oxide Nanostructures in Biosensor Application.

Biosensors (Basel)

January 2025

Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia.

The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between the bioreceptor and transducer, enhancing sensitivity and reducing detection limits.

View Article and Find Full Text PDF

In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine.

View Article and Find Full Text PDF

Doping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!