An analytical growth model is presented to explain the influence of antimony fractional flux on the morphology evolution of catalyst-free InAs Sb semiconductor nanowires grown by the selective-area vapor-solid mechanism on a Si (111) substrate by molecular beam epitaxy. Increasing Sb fractional flux promoted radial growth and suppressed axial growth, resulting in 'nano-disks'. This behavior is explained by a model of indium adatom diffusion along nanowire facets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab1375 | DOI Listing |
Regul Toxicol Pharmacol
December 2024
Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA. Electronic address:
To date, only four studies directly measured dermal absorption kinetics of perfluorooctanoic acid (PFOA) in human skin. Reported kinetic parameters spanned two to five orders of magnitude, demonstrating the need to determine the causes of variability and identify the most appropriate dermal absorption factors for use in exposure assessments. We evaluated the reliability and physiological relevance of studies that measured PFOA fractional absorption, steady-state flux (J), and dermal permeability coefficient (K).
View Article and Find Full Text PDFNat Commun
November 2024
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.
The pairing of electrons is ubiquitous in electronic systems featuring attractive inter-electron interactions, as exemplified in superconductors. Counterintuitively, it can also be mediated in certain circumstances by the repulsive Coulomb interaction alone. Quantum Hall (QH) Fabry-Pérot interferometers (FPIs) tailored in a two-dimensional electron gas under a perpendicular magnetic field have been argued to exhibit such an unusual electron pairing, seemingly without attractive interactions.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Flux attachment provides a powerful conceptual framework for understanding certain forms of topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous use as a theoretical tool, directly realizing flux attachment in a microscopic setting remains an open challenge. Here, we propose a simple approach to realizing flux attachment in a periodically driven (Floquet) system of either spins or hard-core bosons.
View Article and Find Full Text PDFAstrobiology
November 2024
Electron Microscopy Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA.
A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination).
View Article and Find Full Text PDFThis article abandons the traditional Laplace transform and proposes a new method for studying fractional-order circuits, which is the Loop-By-Loop Progressive Iterative Method(LPIM). Firstly, in order to demonstrate the correctness of LPIM, the fractance circuit, which is a relatively mature and simple form in fractional-order circuits, was chosen as the research object. The output signals of fractance circuit were studied for the first time using Laplace transform and LPIM, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!