Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO.

Angew Chem Int Ed Engl

Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.

Published: June 2019

The efficient fixation of excess CO from the atmosphere to yield value-added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO , while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal-organic framework (MOF), termed NU-1006, containing formate dehydrogenase, on a fluorine-doped tin oxide glass electrode modified with Cp*Rh(2,2'-bipyridyl-5,5'-dicarboxylic acid)Cl complex. This system converts CO into formic acid at a rate of 79±3.4 mm h with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF-enzyme composite exhibited significantly higher catalyst stability when subjected to non-native conditions compared to the free enzyme, doubling the formic acid yield.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201901981DOI Listing

Publication Analysis

Top Keywords

formate dehydrogenase
8
metal-organic framework
8
electrochemical regeneration
8
formic acid
8
stabilization formate
4
dehydrogenase metal-organic
4
framework bioelectrocatalytic
4
bioelectrocatalytic reduction
4
reduction efficient
4
efficient fixation
4

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Isolation and application to wastewater treatment of Pseudomonas sp. No. 44 possessing high formaldehyde tolerance.

J Biosci Bioeng

December 2024

Division of Engineering and Agriculture, Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.

Bacteria and fungi that are resistant to formaldehyde (FA) are expected to use biochemical processing to degrade FA in wastewater. Pseudomonas sp. No.

View Article and Find Full Text PDF

Hybrid Enzyme-Electrocatalyst Cascade Modified Gas-Diffusion Electrodes for Methanol Formation from Carbon Dioxide.

Angew Chem Int Ed Engl

December 2024

Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.

We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO reduction under selective formation of methanol. Ag-BiO selectively reduces gaseous CO to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.

View Article and Find Full Text PDF

Determination of free cyanide (fCN) is required for various industrial, environmental, food, and clinical samples. Enzymatic methods are not widely used in this field despite their selectivity and mild conditions. Therefore, we present here a proof of concept for new spectrophotometric enzymatic assays of fCN.

View Article and Find Full Text PDF

Unlabelled: Context-specific genome-scale model (CS-GSM) reconstruction is becoming an efficient strategy for integrating and cross-comparing experimental multi-scale data to explore the relationship between cellular genotypes, facilitating fundamental or applied research discoveries. However, the application of CS modeling for non-conventional microbes is still challenging. Here, we present a graphical user interface that integrates COBRApy, EscherPy, and RIPTiDe, Python-based tools within the BioUML platform, and streamlines the reconstruction and interrogation of the CS genome-scale metabolic frameworks via Jupyter Notebook.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!