Rapid and Simple Screening of CRISPR Guide RNAs (gRNAs) in Cultured Cells Using Adeno-Associated Viral (AAV) Vectors.

Methods Mol Biol

Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, Heidelberg, Germany.

Published: July 2019

Genome editing reagents including the recently introduced CRISPR/Cas9 system have become established and widely used molecular tools to answer fundamental biological questions and to target and treat genetic diseases. The CRISPR system, originally derived from bacteria and archaea, can be delivered into cells using different techniques, comprising (1) transfection of mRNA or plasmid DNA, (2) electroporation of plasmid DNA or the Cas9 protein in a complex with a g(uide)RNA, or (3) use of nonviral or viral vectors. Among the latter, Adeno-associated viruses (AAVs) are particularly attractive owing to many favorable traits: (1) their apathogenicity and episomal persistence, (2) the ease of virus production and purification, (3) the safe handling under lowest biosafety level 1 conditions, and (4) the availability of numerous natural serotypes and synthetic capsid variants with distinct cell specificities. Here, we describe a fast and simple protocol for small-scale packaging of CRISPR/Cas9 components into AAV vectors. To showcase its potential, we employ this method for screening of gRNAs targeting the murine miR-122 locus in Hepa1-6 cells (using AAV serotype 6, AAV6) or the 5'LTR of the human immunodeficiency virus (HIV) in HeLaP4-NLtr cells (using a synthetic AAV9 variant). We furthermore provide a detailed protocol for large-scale production of purified AAV/CRISPR vector stocks that permit higher cleavage efficiencies in vitro and are suitable for direct in vivo applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9170-9_8DOI Listing

Publication Analysis

Top Keywords

aav vectors
8
plasmid dna
8
rapid simple
4
simple screening
4
screening crispr
4
crispr guide
4
guide rnas
4
rnas grnas
4
grnas cultured
4
cells
4

Similar Publications

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) are non-pathogenic, replication-deficient viruses that have gained widespread attention for their application as gene therapy vectors. While these vectors offer high transduction efficiency and long-term gene expression, the host immune response poses a significant challenge to their clinical success. This review focuses on the obstacles to evaluating the humoral response to AAVs.

View Article and Find Full Text PDF

Most rare diseases (RDs) encompass a diverse group of inherited disorders that affect millions of people worldwide. A significant proportion of these diseases are driven by functional haploinsufficiency, which is caused by pathogenic genetic variants. Currently, most treatments for RDs are limited to symptom management, emphasizing the need for therapies that directly address genetic deficiencies.

View Article and Find Full Text PDF

Gene Therapy and Diabetes: A Narrative Review of Recent Advances and the Role of Multidisciplinary Healthcare Teams.

Genes (Basel)

January 2025

School of Pharmacy, Center of Graduate Studies, West Coast University, 590 N Vermont Ave, Los Angeles, CA 90004, USA.

Gene therapy has emerged as a promising frontier in the management of diabetes, offering innovative approaches to address both type 1 and type 2 diabetes. This narrative review examines the advancements in gene therapy applications, focusing on both animal and human studies, and includes a total of 11 studies in adherence to PRISMA guidelines. These studies utilize various viral vectors, such as adeno-associated virus (AAV) and lentivirus, to deliver genes that regulate insulin production and enhance angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!