The steadily increasing throughput in next-generation sequencing technologies is revolutionizing a number of fields in biology. One application requiring massive parallel sequencing is forward genetic screening based on chemical mutagenesis. Such screens interrogate the entire genome in an entirely unbiased fashion and can be applied to a number of research questions. CRISPR/Cas9-based screens, which are largely limited to a gene's loss of function, have already been very successful in identifying drug targets and pathways related to the drug's mode of action. By inducing single nucleotide changes using an alkylating reagent, it is possible to generate amino acid changes that perturb the interaction between a drug and its direct target, resulting in drug resistance. This chemogenomic approach combined with latest sequencing technologies allows deconvolution of drug targets and characterization of drug-target binding interfaces at amino acid resolution, therefore nicely complementing existing biochemical approaches. Here we describe a general protocol for a chemical mutagenesis-based forward genetic screen applicable for drug-target deconvolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9145-7_2 | DOI Listing |
Endocr Oncol
January 2024
OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
Current models for the study of neuroendocrine tumours (NETs) are severely limited. While (e.g.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
As the first mammal to be domesticated for research purposes, rats served as the primary animal model for various branches of biomedical research, including breast cancer studies, up until the late 1990s and early 2000s. During this time, genetic engineering of mice, but not rats, became routine, and mice gradually supplanted rats as the preferred rodent model. But recent advances in creating genetically engineered rat models, especially with the assistance of CRISPR/Cas9 technology, have rekindled the significance of rats as a critical model in exploring various facets of breast cancer research.
View Article and Find Full Text PDFCereb Cortex
January 2025
Institute of Neurology, Anhui University of Chinese Medicine, No. 357 Changjiang Middle Road, Luyang District, Hefei 230061, China.
Brain functional networks are associated with parkinsonism in observational studies. However, the causal effects between brain functional networks and parkinsonism remain unclear. We aimed to assess the potential bidirectional causal associations between 191 brain resting-state functional magnetic resonance imaging (rsfMRI) phenotypes and parkinsonism including Parkinson's disease (PD) and drug-induced parkinsonism (DIP).
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Department of Medicine, University of Padova, Padova, Italy.
Objectives: Mutations in the gene encoded glycoprotein progranulin (PGRN), cause 5-10 % of all cases of frontotemporal lobar degeneration (FTLD). The aim of our study was to verify the analytical and clinical performance of an automated chemiluminescent immunoassay method for PGRN measurement recently developed (Chorus Evo, Diesse Diagnostica, Italy).
Methods: Five plasma pools and residual plasma samples (KEDTA) from 25 control subjects (11 males, 62-79 years; 14 females, 54-76 years) and 151 patients (70 males, 53-81 years; 81 females, 44-82 years) with different neurodegenerative disorders (NDs), were assayed.
J Am Chem Soc
January 2025
Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, United States.
Soft corals are prolific producers of terpenoids, such as pseudopterosins. The exact biosynthetic pathway of these anti-inflammatory diterpene glycosides has eluded the scientific community for decades. Using a forward genetic approach, we have identified, cloned, and expressed the key genes involved in pseudopterosin biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!