is a basic helix-loop-helix factor gene, which was found to be involved in neural cell differentiation. Expression and clinicopathological significance of Hes3 in non-small cell lung cancer was not clear. In this study, we used immunohistochemistry to examine Hes3 expression in normal human lung and non-small cell lung cancer tissues. Hes3 expression was detected in cytoplasm and nucleus. Hes3 expression in bronchial epithelial cells and epithelial cells of submucosal glands was relatively weak and the positive rate was of 30.3% (10/33). Hes3 expression in non-small cell lung cancer tissues (51.8% (58/112)) was significantly higher than that in normal lung tissues ( < 0.05). Hes3 expression in cancer tissues was significantly associated with poor differentiation, advanced TNM stages, lymph node metastasis, and a shorter patient survival time ( < 0.05). study showed that overexpression of Hes3 in A549 cells significantly promoted cancer cell proliferation and invasion, while inhibition of Hes3 expression significantly downregulated cancer cell proliferation and invasion ( < 0.05). Western blotting showed that overexpression of Hes3 significantly upregulated expression of Cyclin D1, Cyclin D3, and MMP7 in A549 cells, while inhibition of Hes3 expression in LK2 cells significantly downregulated the expression of these molecules ( < 0.05). These results indicated that Hes3 may contribute to the malignant phenotype of non-small cell lung cancer, possibly through regulation of Cyclin D1, Cyclin D3, and MMP7, and may be a promising cancer marker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428979PMC
http://dx.doi.org/10.7150/ijms.28139DOI Listing

Publication Analysis

Top Keywords

hes3 expression
28
lung cancer
20
non-small cell
16
cell lung
16
hes3
12
cyclin cyclin
12
cyclin mmp7
12
cancer tissues
12
expression
11
cancer
9

Similar Publications

New dual inducible cellular model to investigate temporal control of oncogenic cooperating genes.

Sci Rep

September 2024

Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.

The study of cooperating genes in cancer can lead to mechanistic understanding and identifying potential therapeutic targets. To facilitate these types of studies, we developed a new dual-inducible system utilizing the tetracycline- and cumate-inducible systems driving HES3 and the PAX3::FOXO1 fusion-oncogene, respectively, as cooperating genes from fusion-positive rhabdomyosarcoma. With this model, we can independently induce expression of either HES3 or PAX3::FOXO1, as well as simultaneously induce expression of both genes.

View Article and Find Full Text PDF

The study of cooperating genes in cancer can lead to mechanistic understanding and identifying potential therapeutic targets. To facilitate these types of studies, we developed a new dual-inducible system utilizing the tetracycline- and cumate-inducible systems driving HES3 and the PAX3::FOXO1 fusion-oncogene, respectively, as cooperating genes from fusion-positive rhabdomyosarcoma. With this new model, we can independently induce expression of either HES3 or PAX3::FOXO1, as well as simultaneously induce expression of both genes.

View Article and Find Full Text PDF

Pathogenic variations in and contribute to congenital hypothyroidism due to dyshormonogenesis by regulating the Notch signalling pathway.

J Med Genet

September 2023

The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients.

View Article and Find Full Text PDF

Zebrafish her3 knockout impacts developmental and cancer-related gene signatures.

Dev Biol

April 2023

Center for Childhood Cancer & Blood Diseases, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA; Molecular, Cellular, and Developmental Biology Ph.D. Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA. Electronic address:

HES3 is a basic helix-loop-helix transcription factor that regulates neural stem cell renewal during development. HES3 overexpression is predictive of reduced overall survival in patients with fusion-positive rhabdomyosarcoma, a pediatric cancer that resembles immature and undifferentiated skeletal muscle. However, the mechanisms of HES3 cooperation in fusion-positive rhabdomyosarcoma are unclear and are likely related to her3/HES3's role in neurogenesis.

View Article and Find Full Text PDF

EGFL7 Secreted By Human Bone Mesenchymal Stem Cells Promotes Osteoblast Differentiation Partly Via Downregulation Of Notch1-Hes1 Signaling Pathway.

Stem Cell Rev Rep

May 2023

Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou City, People's Republic of China.

Background: Epidermal growth factor-like domain protein 7 (EGFL7) is a secreted protein that is differentially expressed in the bone microenvironment; however, the effect of EGFL7 on the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) is largely unknown.

Methods: EGFL7 expression in the fracture microenvironment was analyzed based on the Gene Expression Omnibus (GEO) database. Knockdown of EGFL7 by small interfering RNA (siRNA) and in vitro stimulation with recombinant human EGFL7 (rhEGFL7) protein were used to assess alterations in downstream signaling and changes in the osteogenic differentiation and proliferation of hBMSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!