The Conserved Molecular Determinants of Virulence in Dengue Virus.

Int J Med Sci

Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia.

Published: July 2019

AI Article Synopsis

  • Dengue virus is part of the Flaviviridae family and can lead to mild illness or severe conditions like dengue hemorrhagic fever, particularly dangerous for children.
  • The only vaccine available, CYD-TDV, has limited age coverage and is only for those who've had prior dengue exposure.
  • Research on specific mutations in the dengue virus aims to create a more effective live attenuated vaccine that works for all age groups and serotypes.

Article Abstract

Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus and/or have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428985PMC
http://dx.doi.org/10.7150/ijms.29938DOI Listing

Publication Analysis

Top Keywords

dengue virus
20
dengue
13
virulence dengue
8
virus dengue
8
dengue haemorrhagic
8
haemorrhagic fever
8
dengue vaccine
8
prior dengue
8
dengue exposure
8
virus
6

Similar Publications

Dengue virus (DENV) is an important arthropod-borne viral disease, with four antigenically and genetically diverse serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Timely and accurate diagnosis of dengue virus serotypes is crucial for the management of outbreaks. This study focussed on the development of a RT-PCR based lateral flow strip assay to detect DENV serotypes in a dual detection manner without using gel electrophoresis.

View Article and Find Full Text PDF

T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease.

Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients.

View Article and Find Full Text PDF

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!