Third harmonic generation (THG) is a nonlinear optical process attractive in high-resolution interfacial studies, sub-wavelength light manipulation, and bio-molecular detection due to its capability of converting low-energy quanta into a quantum of a higher energy. One of the limitations in utilizing THG is its low power conversion efficiency; thus, various THG enhancement methods have been researched by involving plasmonic coupling effects or utilizing electric band gap resonances at quantum dots or two-dimensional materials. Meanwhile, lanthanide ion-doped up-conversion nanoparticles (UCNPs) can be excited by a multi-photon process similar to THG, but its interaction or resonance with THG has not been studied to date. In this Communication, we demonstrate the first coherent amplification of third-order harmonic femtosecond pulses at multi-layered UCNP thin-film with an amplification factor of 7.8. This amplification is made by the resonance interaction of incident femtosecond laser field, generated third-order harmonics, and the electric band gaps of UCNPs. The power contribution of the third-order harmonic and the up-conversion luminescence (UCL) is strongly dependent on the sample geometry due to the reabsorption effect. For in-depth understanding of the emission characteristics, spectral-domain, time-domain, radio-frequency (RF) domain, and polarization-dependence analysis were addressed. This coherent amplification of third harmonic (TH) at UCNP thin-films enables us to attain higher power, shorter wavelength, and ultra-short femtosecond pulses generated from a simple thin-film structure near to the target samples, which will pave a way to an ultrafast short-wavelength laser platform for material characterization, sub-wavelength photonics, and biomolecular detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433956PMC
http://dx.doi.org/10.1038/s41598-019-41591-6DOI Listing

Publication Analysis

Top Keywords

third-order harmonic
12
femtosecond pulses
12
amplification third-order
8
harmonic femtosecond
8
up-conversion nanoparticles
8
third harmonic
8
electric band
8
coherent amplification
8
amplification
5
harmonic
5

Similar Publications

In this report, the nonlinear optical (NLO) properties of titanium dioxide nanoparticles (TiO NPs) have been explored experimentally using femtosecond laser light along with the Z-scan approach. The synthesis of TiO NPs was carried out in distilled water through nanosecond second harmonic Nd:YAG laser ablation. Characterization of the TiO NPs colloids was conducted using UV-visible absorption spectroscopy, transmission electron microscopy (TEM), inductively coupled plasma (ICP), and energy-dispersive X-ray spectroscopy (EDX).

View Article and Find Full Text PDF

Probing the anharmonicity of vibrational polaritons with double-quantum two-dimensional infrared spectroscopy.

Nanophotonics

June 2024

Schulich Faculty of Chemistry, Solid State Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

Strong coupling between the molecular vibrations and electromagnetic fields of light confined to an infrared cavity leads to the formation of vibro-polaritons - quasi-particles thought to provide the means to control the rates of chemical reactions inside a dark cavity. Despite the mechanisms indicating how vibrational coupling to the vacuum fields can affect the reaction rates are still not well understood, it has been recently demonstrated that the formation of the polariton states alters the ultrafast relaxation dynamics of the strongly coupled system. The relaxation dynamics in molecules, which is known to be important for the chemical reactivity, is directed by anharmonic couplings involving multiple intra- and inter-molecular vibrational degrees of freedom.

View Article and Find Full Text PDF

Harmonic quantum cascade laser terahertz frequency combs enabled by multilayer graphene top-cavity scatters.

Nanophotonics

April 2024

NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.

Optical frequency comb synthesizers, operating in the harmonic regime, are metrological sources in which the emitted optical power is concentrated in a few modes, spaced by several multiples of the cavity free spectral range (FSR). This behavior reflects in a large correlation degree and, in principle, in an increased optical power per mode. In miniaturized quantum cascade lasers (QCLs), harmonic frequency combs (HFCs) are hence particularly attracting to explore quantum correlation effects between adjacent harmonic modes, enabled by the inherently large gain media third-order Kerr nonlinearity, even if controlled generation of stable HFCs of predefined order, is typically demanding in such electrically pumped sources.

View Article and Find Full Text PDF

Mid-infrared (MIR) microcombs exhibit remarkable advantages for trace molecule detection, facilitating fast and precise spectral analysis. However, due to limitations in tunability and size of available MIR pump sources, it is difficult to achieve compact MIR mode-locked microcombs using traditional methods. Here, we propose the turnkey generation of MIR soliton and near-infrared second-harmonic microcombs in a single microresonator.

View Article and Find Full Text PDF

χ-translated microcomb generation in microresonators that possess both χ and χ nonlinear responses opens the door for ultra-broadband integrated comb sources. The interplay between the second- and third-order nonlinearities within a fixed coupling coefficient fertilizes complicated cavity dynamics which is of paramount scientific and technological potential. However, this coupling coefficient can be drastically wavelength-dependent, which is lack of consideration in previous studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!