Mesophyll Abscisic Acid Restrains Early Growth and Flowering But Does Not Directly Suppress Photosynthesis.

Plant Physiol

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel

Published: June 2019

Abscisic acid (ABA) levels increase significantly in plants under stress conditions, and ABA is thought to serve as a key stress-response regulator. However, the direct effect of ABA on photosynthesis and the effect of mesophyll ABA on yield under both well-watered and drought conditions are still the subject of debate. Here, we examined this issue using transgenic Arabidopsis () plants carrying a dominant ABA-signaling inhibitor under the control of a mesophyll-specific promoter (, abbreviated to ). Under normal conditions, plants displayed slightly higher stomatal conductance and carbon assimilation than wild-type plants; however, these parameters were comparable following ABA treatment. These observations suggest that ABA does not directly inhibit photosynthesis in the short term. The plants also exhibited a variety of altered phenotypes under optimal conditions, including more vigorous initial growth, earlier flowering, smaller flowers, and delayed chlorophyll degradation. Furthermore, under optimal conditions, plant seed production was less than a third of that observed for the wild type. However, under drought conditions, wild-type and seed yields were similar due to a significant reduction in wild-type seed and no reduction in seed. These findings suggest that endogenous basal ABA inhibits a stress-escape response under nonstressed conditions, allowing plants to accumulate biomass and maximize yield. The lack of a correlation between flowering time and plant biomass combined with delayed chlorophyll degradation suggests that this stress-escape behavior is regulated independently and upstream of other ABA-induced effects such as rapid growth and flowering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548251PMC
http://dx.doi.org/10.1104/pp.18.01334DOI Listing

Publication Analysis

Top Keywords

abscisic acid
8
growth flowering
8
drought conditions
8
optimal conditions
8
delayed chlorophyll
8
chlorophyll degradation
8
wild-type seed
8
aba
7
conditions
7
plants
6

Similar Publications

The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.

View Article and Find Full Text PDF

Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.

View Article and Find Full Text PDF

Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase.

View Article and Find Full Text PDF

NpCIPK6-NpSnRK1 module facilitates intersubgeneric hybridization barriers in water lily () by reducing abscisic acid content.

Hortic Res

January 2025

Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China.

Prefertilization hybridization barriers are the main causes of intersubgeneric hybridization challenges in water lily. However, the mechanism underlying low compatibility between pollen and stigma of water lily remains unclear. This study demonstrates that CBL-interacting protein kinase 6 (CIPK6) responded to the signaling exchange between incompatible pollen and stigma through interactions with SNF1-related kinase 1 (SnRK1) and promotes the accumulation of SnRK1 protein.

View Article and Find Full Text PDF

SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition.

Sci Adv

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!