Previously, we documented the role of the programmed death-1 (PD-1, also known as PDCD1) pathway in macrophage apoptosis and the downregulation of this signaling during infection by the intra-macrophage parasite However, we also found that, during the late phase of infection, PD-1 expression was significantly increased without activating host cell apoptosis; here we show that inhibition of PD-1 led to markedly decreased parasite survival, along with increased production of TNFα, IL-12, reactive oxygen species (ROS) and nitric oxide (NO). Increased PD-1 led to inactivation of AKT proteins resulting in nuclear sequestration of FOXO-1. Transfecting infected cells with constitutively active FOXO-1 (CA-FOXO) led to increased cell death, thereby suggesting that nuclear FOXO-1 might be inactivated. Infection significantly induced the expression of SIRT1, which inactivated FOXO-1 through deacetylation, and its knockdown led to increased apoptosis. SIRT1 knockdown also significantly decreased parasite survival along with increased production of TNFα, ROS and NO. Administration of the SIRT1 inhibitor sirtinol (10 mg/kg body weight) in infected mice decreased spleen parasite burden and a synergistic effect was found with PD-1 inhibitor. Collectively, our study shows that utilizes the SIRT1/FOXO-1 axis for differentially regulating PD-1 signaling and, although they are interconnected, both pathways independently contribute to intracellular parasite survival.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.226274DOI Listing

Publication Analysis

Top Keywords

pd-1 signaling
8
sirt1/foxo-1 axis
8
pd-1 led
8
decreased parasite
8
parasite survival
8
survival increased
8
increased production
8
production tnfα
8
led increased
8
pd-1
6

Similar Publications

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

The hepatocyte growth factor (HGF) along with its receptor (c-MET) are crucial in preserving standard cellular physiological activities, and imbalances in the c-MET signaling pathway can lead to the development and advancement of tumors. It has been extensively demonstrated that immune checkpoint inhibitors (ICIs) can result in prolonged remission in certain patients. Nevertheless, numerous preclinical studies have shown that MET imbalance hinders the effectiveness of anti-PD-1/PD-L1 treatments through various mechanisms.

View Article and Find Full Text PDF

Programmed cell death protein 1 (PD-1) and its ligand PD-L1 have been detected at the materno-embryonic interface in both human and murine pregnancy models. However, research regarding the PD-1/PD-L1 signal in preeclampsia (PE) is limited. In the present investigation, 30 normal pregnant females and 30 PE patients were enrolled.

View Article and Find Full Text PDF

Mutations in the KRAS gene in non-small cell lung cancer (NSCLC) are common drivers. Gene expression and mutation data of NSCLC were collected from the TCGA dataset. DEGs between KRAS mutations and wild type were identified, and enrichment analysis was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!