The formation of neuronal dendrite branches is fundamental for the wiring and function of the nervous system. Indeed, dendrite branching enhances the coverage of the neuron's receptive field and modulates the initial processing of incoming stimuli. Complex dendrite patterns are achieved through a dynamic process of branch formation, branch extension and retraction. The first step towards branch formation is the generation of a dynamic filopodium-like branchlet. The mechanisms underlying the initiation of dendrite branchlets are therefore crucial to the shaping of dendrites. Through time-lapse imaging of the subcellular localization of actin during the process of branching of larva sensory neurons, combined with genetic analysis and electron tomography, we have identified the Actin-related protein (Arp) 2/3 complex as the major actin nucleator involved in the initiation of dendrite branchlet formation, under the control of the activator WAVE and of the small GTPase Rac1. Transient recruitment of an Arp2/3 component marks the site of branchlet initiation These data position the activation of Arp2/3 as an early hub for the initiation of branchlet formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.171397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!