Lignocellulose from plant biomass represents an abundant and renewable source for the production of environmentally friendly chemicals and biofuels. However, its recalcitrant nature entails the use of complex biochemical reactions that are still challenging. Since the degradation of lignocellulose is the current bottleneck of the conversion processes, the search for novel enzymes and microbial strains for degrading plant biomass is of high importance. Currently, bacteria are in the spotlight as promising candidates for novel conversion strategies due to their wide functional diversity and versatility. Here, we review the lines of evidence that show the high potential of bacterial strains from soil for biomass conversion ranging from strain characterization to metagenome and metatranscriptome analysis. Substantial and diverse fractions of soil bacteria are able to decompose the major lignocellulose components. To do that, bacteria evolved structurally variable and often highly complex lignocellulolytic systems composed of enzymes as well as proteins involved in efficient substrate binding. Both as individual components or in combination, bacterial enzymes, and accessory proteins appear to be promising tools in the biotechnological valorization of lignocellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2019.03.013 | DOI Listing |
Animals (Basel)
November 2024
College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China.
The objective of this study was to assess the impact of , , and a lignocellulolytic enzyme system on the nutritional value, fermentation profiles, rumen digestion, and bacterial community of fresh waxy corn stalk silage. Fresh waxy corn stalks harvested after 90 days of growth were treated with no additives (CON), compound multiple lactobacilli (ML, comprising at 1.0 × 10 cfu/g fresh weight and at 1.
View Article and Find Full Text PDFProtein Sci
November 2024
CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
BMC Biol
October 2024
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
Background: The rumen microbiome plays an essential role in maintaining ruminants' growth and performance even under extreme environmental conditions, however, which factors influence rumen microbiome stability when ruminants are reared in such habitats throughout the year is unclear. Hence, the rumen microbiome of yak (less domesticated) and cattle (domesticated) reared on the Qinghai-Tibetan Plateau through the year were assessed to evaluate temporal changes in their composition, function, and stability.
Results: Rumen fermentation characteristics and pH significantly shifted across seasons in both cattle and yak, but the patterns differed between the two ruminant species.
Appl Microbiol Biotechnol
October 2024
Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
Herbivorax saccincola A7 is an anaerobic alkali-thermophilic lignocellulolytic bacterium that possesses a cellulosome and high xylan degradation ability. To understand the expression profile of extracellular enzymes by carbon sources, quantitative real-time PCR was performed on all cellulosomal and non-cellulosomal enzyme genes of H. saccincola A7 using cellulose and xylan as carbon sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!