Biodiversity is key for maintenance of life and source of richness. Nevertheless, concepts such as phenotype expression are also pivotal to understand how chemical diversity varies in a living organism. Sesquiterpene pyridine alkaloids (SPAs) and quinonemethide triterpenes (QMTs) accumulate in root bark of Celastraceae plants. However, despite their known bioactive traits, there is still a lack of evidence regarding their ecological functions. Our present contribution combines analytical tools to study clones and individuals of (Celastraceae) kept alive in an ex situ collection and determine whether or not these two major biosynthetic pathways could be switched on simultaneously. The relative concentration of the QMTs maytenin () and pristimerin (), and the SPA aquifoliunin E1 () were tracked in raw extracts by HPLC-DAD and ¹H-NMR. Hierarchical Clustering Analysis (HCA) was used to group individuals according their ability to accumulate these metabolites. Semi-quantitative analysis showed an extensive occurrence of QMT in most individuals, whereas SPA was only detected in minor abundance in five samples. Contrary to QMTs, SPAs did not accumulate extensively, contradicting the hypothesis of two different biosynthetic pathways operating simultaneously. Moreover, the production of QMT varied significantly among samples of the same ex situ collection, suggesting that the terpene contents in root bark extracts were not dependent on abiotic effects. HCA results showed that QMT occurrence was high regardless of the plant age. This data disproves the hypothesis that QMT biosynthesis was age-dependent. Furthermore, clustering analysis did not group clones nor same-age samples together, which might reinforce the hypothesis over gene regulation of the biosynthesis pathways. Indeed, plants from the ex situ collection produced bioactive compounds in a singular manner, which postulates that rhizosphere environment could offer ecological triggers for phenotypical plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471723PMC
http://dx.doi.org/10.3390/molecules24061160DOI Listing

Publication Analysis

Top Keywords

situ collection
16
root bark
8
biosynthetic pathways
8
clustering analysis
8
ecological insights
4
insights track
4
track cytotoxic
4
cytotoxic compounds
4
compounds living
4
individuals
4

Similar Publications

Background: Inhibitory interneurons normally regulate neural networks underlying memory and cognition, but are disrupted in Alzheimer's disease. Proper interneuron activity reduces amyloid-beta, whereas hyperexcitability elevates amyloid levels. Still, the underlying pathologic processes mediating interneuron dysfunction remain unknown.

View Article and Find Full Text PDF

Background: SNX19 is a key player in endolysosomal and autophagy pathways, which have been extensively reported in neuronal dysfunction and neurodegenerative diseases. Although genetic and cellular evidence suggests SNX19 contributes to neuropathology, the underlying mechanisms remain unknown. Here, we propose to study the mechanism in aging postmortem brain tissue at single cell level and model SNX19 in human induced pluripotent stem cell (hiPSCs) derived brain organoids.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, location VUmc, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam, Netherlands.

Background: Recent studies highlight distinct patterns of cortical atrophy between amnestic (typical) and non-amnestic (atypical, with subtypes: behavioural, dysexecutive, logopenic and visuospatial) clinical phenotypes of Alzheimer's disease (AD). The current study aimed to assess regional MRI patterns of cortical atrophy across AD phenotypes, and their association with amyloid-beta (Aβ), phosphorylated tau (pTau), axonal degeneration (NfL) and microvascular deterioration (COLIV).

Method: Postmortem In-situ 3DT1 3T-MRI data was collected for 33 AD (17 typical, 16 atypical) and 16 control brain donors.

View Article and Find Full Text PDF

Reframing Formalin: A Molecular Opportunity Enabling Historical Epigenomics and Retrospective Gene Expression Studies.

Mol Ecol Resour

January 2025

National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, Australian Capital Territory, Australia.

Formalin preservation of museum specimens has long been considered a barrier to molecular research due to extensive crosslinking and chemical modification. However, recent optimisation of hot alkaline lysis and proteinase K digestion DNA extraction methods have enabled a growing number of studies to overcome these challenges and conduct genome-wide re-sequencing and targeted locus-specific sequencing. The newest, and perhaps most unexpected utility of formalin preservation in archival samples is its ability to preserve in situ DNA-protein interactions at a molecular level.

View Article and Find Full Text PDF

Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!