Degradation of nuclear pressure vessel steel materials, 15Kh2NMFA type and A508 Cl2 type (definition is given in the text) were investigated by a novel magnetic nondestructive testing method, so-called Magnetic Adaptive Testing (MAT), which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. The measured samples were thermally treated by a special step cooling procedure, which generated structural changes in the material. It was found that this type of degradation can be easily followed by magnetic measurements. Charpy impact test were also performed and the results were compared with the magnetic parameters. In case of 15Kh2NMFA steel, a good, reliable and closely linear correlation was found between magnetic descriptors and transition temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470749PMC
http://dx.doi.org/10.3390/ma12060963DOI Listing

Publication Analysis

Top Keywords

magnetic adaptive
8
adaptive testing
8
magnetic
7
inspection reactor
4
reactor steel
4
steel degradation
4
degradation magnetic
4
testing degradation
4
degradation nuclear
4
nuclear pressure
4

Similar Publications

This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.

View Article and Find Full Text PDF

Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture.

JACS Au

December 2024

Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.

The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .

View Article and Find Full Text PDF

Clinical validation of a prognostic preclinical magnetic resonance imaging biomarker for radiotherapy outcome in head-and-neck cancer.

Radiother Oncol

December 2024

Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Cluster of Excellence "Machine Learning", University of Tübingen, Tübingen, Germany. Electronic address:

Purpose: To retrain a model based on a previously identified prognostic imaging biomarker using apparent diffusion coefficient (ADC) values from diffusion-weighted magnetic resonance imaging (DW-MRI) in a preclinical setting and validate the model using clinical DW-MRI data of patients with locally advanced head-and-neck cancer (HNC) acquired before radiochemotherapy.

Material And Methods: A total of 31 HNC patients underwent T2-weighted and DW-MRI using 3 T MRI before radiochemotherapy (35x2Gy). Gross tumor volumes (GTV) were delineated based on T2-weighted and b500 images.

View Article and Find Full Text PDF

 - a large-scale dataset of 3D medical shapes for computer vision.

Biomed Tech (Berl)

December 2024

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases.

Biosens Bioelectron

December 2024

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China. Electronic address:

Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!