Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471984 | PMC |
http://dx.doi.org/10.3390/molecules24061140 | DOI Listing |
Insects
December 2024
Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce abundance, and the Stri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in . A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Department of Dermatology, JIPMER, Puducherry, 06 India.
Unlabelled: Methotrexate is used to manage moderate to severe psoriasis and psoriatic arthritis. Methotrexate acts by inhibiting the enzymes involved in nucleotide synthesis. Methotrexate polyglutamates (MTXPGs) have a higher potency to inhibit Dihydrofolate reductase (DHFR), 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC), and thymidylate synthase (TS), compared to naïve methotrexate.
View Article and Find Full Text PDFEur J Med Chem
February 2025
Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman. Electronic address:
In this present work, we describe the syntheses of a new series of 32 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives (2-13, 15a-15f, 16a-16f, 17a-17f and 19a, 19b, 20a), which constitute a new class of 1H-1,2,3-triazoles. Compounds 15a-15f, 16a-16f, 17a-17f have been prepared by employing "click" reactions between substituted 1H-indole-based meldrum alkynes (11, 12 and 13) and substituted aromatic azides (14a-14f) in the presence of copper iodide (CuI) and Hünig's base. Then, the synthesis of compounds 19, 20 through decomposition of meldrum moiety.
View Article and Find Full Text PDFBMC Chem
December 2024
Laboratory of Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
Dihydrofolate reductase (DHFR) is an enzyme that plays a crucial role in folate metabolism, which is essential for cell growth and division. DHFR has been identified as a molecular target for numerous diseases due to its significance in various biological processes. DHFR inhibitors can disrupt folate metabolism by inhibiting DHFR, leading to the inhibition of cell growth.
View Article and Find Full Text PDFChem Biol Drug Des
December 2024
Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
Tuberculosis (TB) is an obstinate and infectious disease requiring a relatively longer treatment duration than other bacterial infections. The current treatment regime is prolonged and cumbersome, with adverse effects, often leading to nonadherence. The upsurge in TB's multidrug-resistant and extensively drug-resistant strains with evolved resistance to existing drugs has compounded the problems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!