While several studies have found that neural oscillations play a key role in the functioning of working memory, the nature of aberrant oscillatory activity underlying working memory impairments in Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains largely unexplored. These individuals often display structural alterations in brain regions and pathways involved in working memory processes and therefore may also display altered oscillatory activity during memory activation. Electroencephalographic (EEG) activity was recorded during the N-back working memory task in three groups: AD (n = 29), MCI (n = 100), and healthy controls (HCs; n = 40). Theta (4-7 Hz) and alpha (7.5-12 Hz) modulation was measured in response to the stimulus presentation during correct and incorrect responses. This modulation represents the change in EEG activity associated with the stimulus onset and was measured as a ratio of post stimulus power to pre stimulus power. We also assessed the relationship between change in oscillatory power and working memory performance. Compared to HCs, the AD group demonstrated the lowest working memory accuracy and a smaller theta ratio for correct responses on the 2-back condition; the MCI group demonstrated a smaller theta ratio for correct responses on the 3-back condition. Finally, we observed that the theta ratio, but not the alpha ratio, was a significant predictor of working memory performance in the three groups for all conditions. Taken together, these behavioral and electrophysiological results suggest that in addition to impairments in working memory performance, modulation of theta, but not alpha power, may be impaired in MCI and AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-181195DOI Listing

Publication Analysis

Top Keywords

working memory
36
memory performance
12
theta ratio
12
memory
10
working
9
theta alpha
8
alzheimer's disease
8
disease mild
8
mild cognitive
8
cognitive impairment
8

Similar Publications

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Actinogen Medical, Sydney, Australia.

Background: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disorder without a cure. Targeting this multifactorial disease by repurposing FDA approved drugs serves as a faster mode of treatment due to its pre-established human safety. We tested terazosin (TZ), an a-1 adrenergic receptor (AR) antagonist and phosphoglycerate kinase-1 (PGK1) activator as having potential to treat AD.

View Article and Find Full Text PDF

Background: Acetylcholine, a neurotransmitter critical for cognitive functions, including attention, memory, and sociability, is essential for maintaining synaptic integrity. Deficits in acetylcholine levels are linked to cognitive impairments. Heterozygous VAChT KD (VAChT KDHET) mice, characterized by reduced vesicular acetylcholine transporter protein production, exhibit cognitive impairments due to diminished acetylcholine release.

View Article and Find Full Text PDF

Background: The increased incidence of Alzheimer's disease (AD) rate represent an unmet medical need and thus critical for the development of novel molecular therapeutics. Recent work focusing on patients with apoE4 alleles has highlighted the association of brain cholesterol dysregulation with elevated pathological burden and neurodegeneration. These studies have highlighted the importance of the nuclear receptor Liver X receptor (LXR) for developing AD therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!