Cyanobacterial blooms represent a worldwide problem in freshwater as well as marine ecosystems as producers of various toxic compounds. This study provides environmentally important information about the common presence of mixtures of retinoids in various water bodies associated with the occurrence of cyanobacterial blooms dominated by many different species. The study documents, for the first time, that retinoids are produced by environmental cyanobacterial blooms dominated by species belonging to different genera such as Microcystis, Dolichospermum, Planktothrix, Woronichinia, Pseudanabaena and others. Samples of biomass of cyanobacterial blooms and their surrounding water were collected from seventeen independent freshwater bodies across the Czech Republic during summer 2015. Retinoid-like activity was detected by an in vitro reporter gene bioassay in water samples from 8 out of 17 localities with a maximal activity of 263 ng all-trans retinoic acid equivalent (REQ)/L. In comparison, in vitro assessment of biomass extracts documented retinoid-like activity at 11 out of 17 localities with a maximal retinoid-like activity of 867 ng REQ/g dry mass (dm). Individual retinoids were detected by chemical analyses in all water samples and in 16 out of 17 biomass samples with 4keto-retinal and all-trans 5,6epoxy retinoic acid being detected in aquatic ecosystems for the first time. Further, all-trans 4keto retinoic acid and retinal were the most commonly detected compounds in both types of samples. With respect to retinoid-like activity, a large proportion was explained in some samples by contributions of individual detected retinoids calculated from their concentrations and relative potencies. However, results also indicate that other unknown compounds with a retinoic acid receptor-mediated mode of action were present. The revealed widespread production of retinoids by cyanobacterial blooms dominated by diverse species across various aquatic ecosystems and their common presence in both biomass and surrounding water raises concern namely because some retinoids belong to the most potent teratogens. These compounds need to be taken into consideration in the assessment of risks associated with massive cyanobacterial blooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.03.009 | DOI Listing |
Environ Res
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.
View Article and Find Full Text PDFChemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
The global phenomenon of cyanobacterial bloom pollution is spreading globally due to climate change and eutrophication. It is well established that harmful cyanobacteria produce a wide range of toxins including microcystin-LR (MC-LR), a cyclic heptapeptide toxin known to damage various organs. The intestinal tract is the main site of MC-LR absorption and one of the targets susceptible to toxicity.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Informatics and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia. Electronic address:
Microcystins (MCs) occur frequently during cyanobacterial blooms worldwide, representing a group of currently about 300 known MC congeners, which are structurally highly similar. Human exposure to MCs via contaminated water, food or dietary supplements can lead to severe intoxications with ensuing high morbidity and in some cases mortality. Currently, one MC congener (MC-LR) is almost exclusively considered for risk assessment (RA) by the WHO.
View Article and Find Full Text PDFEnviron Manage
January 2025
Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
Cyanobacterial blooms in shallow lakes pose a significant threat to aquatic ecosystems and public health worldwide, highlighting the urgent need for advanced predictive methodologies. As impounded lakes along the Eastern Route of the South-to-North Water Diversion Project, Lakes Hongze and Luoma play a key role in water resource management, making the prediction of cyanobacterial blooms in these lakes particularly important. To address this, satellite remote sensing data were utilized to analyze the spatiotemporal dynamics of cyanobacterial blooms in these lakes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!