Proteases play a main role in the mobilization of storage proteins during seed germination. Until today, there is little information about the involvement of serine proteases, particularly subtilases, in the germination of barley grains. The aims of the present work were to study the contribution of serine proteases to the total proteolytic activity induced during germination of barley grains and evaluate the specific involvement of subtilases in this process. Proteolytic activity assayed against azocasein in the presence of specific inhibitors, showed that serine proteases contributed between 10 and 20% of total activity along germination. Subtilase activity increased from day 1 after imbibition with a peak between days 4-5. Moreover, in vivo determination of subtilase activity in germinating grains revealed increasing activity along germination mainly localized in the seed endosperm and developing rootlets. Finally, the expression of 19 barley genes encoding subtilases was measured by real time PCR during germination. Three of the analyzed genes increased their expression along germination, five showed a transient induction, one was down-regulated, nine remained unchanged and one was not expressed. The present work demonstrates the involvement of subtilases in germination of barley grains and describes the positive association of eight subtilase genes to this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2019.03.021 | DOI Listing |
Cell Rep
December 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Plant roots grow in association with a community of microorganisms collectively known as the rhizosphere microbiome. Immune activation in response to elicitors like the flagellin-derived epitope flg22 restricts bacteria on plant roots but also inhibits plant growth. Some commensal root-associated bacteria are capable of suppressing the plant immune response to elicitors.
View Article and Find Full Text PDFNat Commun
November 2024
The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK.
Most angiosperm plants recognise the 22-residue flagellin (flg22) epitope in bacterial flagellin via homologs of cell surface receptor FLS2 (flagellin sensitive-2) and mount pattern-triggered immune responses. However, flg22 is buried within the flagellin protein indicating that proteases might be required for flg22 release. Here, we demonstrate the extracellular subtilase SBT5.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova 39, SI-1000, Ljubljana, Slovenia. Electronic address:
Measuring the activity of proteases is essential for investigating both the physiological functions and commercial applications of these enzymes. In contrast to the numerous protease assays that are based on chromogenic or fluorogenic peptide substrates, there is a lack of approaches to monitor degradation of proteins in real time. Here we report a protease assay where SYPRO Orange is employed as a fluorogenic probe to follow proteolysis.
View Article and Find Full Text PDFPlant Sci
January 2025
Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands. Electronic address:
The utilization of proteins extracted from tomato (Solanum lycopersicum) leaves as cost-effective resources for human consumption or animal feed has gained interest. Thus, increasing protein extractability from tomato leaves became a new breeding target. However, the genetic factors influencing this trait remains poorly understood.
View Article and Find Full Text PDFNat Plants
November 2024
Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!