A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A theoretical study of several fully hydrogenated borophenes. | LitMetric

A theoretical study of several fully hydrogenated borophenes.

Phys Chem Chem Phys

School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China.

Published: April 2019

AI Article Synopsis

  • Several recently created borophene monolayers display metallic characteristics but face challenges with structural instability and the need for further exploration of their unique physical properties.
  • This study focuses on four fully hydrogenated borophenes (β12, δ3, δ5, and α borophanes), using first-principles calculations to assess their stability.
  • The findings reveal that δ3 and δ5 borophanes are stable and act as semiconductors with indirect band gaps, making them promising candidates for nanoelectronics applications.

Article Abstract

Several recently synthesized two dimensional borophene monolayers are almost all metallic with a strong anisotropic character, but their structural instability and the need to explore their novel physical properties are still ongoing issues. We present a detailed study of four fully hydrogenated borophenes (β12, δ3, δ5 and α borophanes) by first-principles calculations. According to phonon dispersion relations and ab initio molecular dynamics simulations, δ3 and δ5 borophanes are dynamically and thermally stable. The structural, mechanical, and electronic properties of δ3 and δ5 borophanes are analyzed. The results indicate that charge transfer from B to H atoms is crucial for the stability of two borophane phases. The HSE06 calculations predict that both δ3 and δ5 borophanes are semiconductors with indirect band gaps of 1.51 and 1.99 eV, respectively. These findings indicate that δ3 and δ5 borophanes are ideal for applications in nanoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp00468hDOI Listing

Publication Analysis

Top Keywords

δ3 δ5
20
δ5 borophanes
20
study fully
8
fully hydrogenated
8
hydrogenated borophenes
8
δ3
5
δ5
5
borophanes
5
theoretical study
4
borophenes synthesized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!