Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To evaluate rheological properties, dissolution, and ocular pharmacokinetics of loteprednol etabonate (LE) (submicron) ophthalmic gel 0.38%. The viscosity of the LE gel 0.38% formulation was measured with a controlled stress rheometer. Dissolution kinetics were evaluated in a fixed-volume and flow-through assay. Rabbits received a single instillation of LE (submicron) gel 0.38% (both eyes), and concentrations of LE in ocular tissues were determined through 24 h by liquid chromatography with tandem mass spectrometry. Where indicated, comparators included micronized LE gel 0.38%, 0.5% (Lotemax gel), and 0.75%. LE (submicron) gel 0.38% exhibited shear-thinning characteristics similar to LE gel 0.5% with nearly identical yield stress. LE (submicron) gel 0.38% released 2.6-fold more LE into the dissolution medium than micronized LE gel 0.5% over 30 s in the fixed-volume dissolution assay, and submicron LE attained higher concentrations of dissolved LE than micronized LE gel 0.38% in the flow-through dissolution assay. In rabbits, the maximal concentration and area-under-the-curve over 24 h for LE in aqueous humor were 2.5- and 1.8-fold higher, respectively, for LE (submicron) gel 0.38% versus micronized LE gel 0.5% (both < 0.001). Pharmacokinetic parameters were similar for most other tissues. LE (submicron) gel 0.38% demonstrated similar rheological properties to micronized LE gel 0.5% but faster dissolution, thus providing similar or higher LE concentrations in the aqueous humor, cornea, and iris-ciliary body after ocular dosing in rabbits despite a lowered concentration of drug in the formulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588111 | PMC |
http://dx.doi.org/10.1089/jop.2018.0136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!