Atmospheric nitrogen deposition in China displays a pronounced southeast-northwest gradient, with a range of ~35 kg·hm·a in southern and central China and ~7.55 kg·hm·a in the northwest. With the Grain for Green project, the environment of Loess Plateau has been greatly improved in the past decades. Little is known about how nitrogen deposition impacts the soil microbial communities in plantations in this region. In order to investigate the responses of diversity and structure of soil microbial community in Pinus tabuliformis plantations to nitrogen addition on Loess Plateau, China, we used high-throughput sequencing of 16S ribosomal RNA genes of bacteria and ITS genes of fungi to investigate the effects of nitrogen addition (200 kg N·hm·a) on the bacterial and fungal community over a 40-year chronosequence of coniferous P. tabuliformis plantation forests. After nitrogen addition, the Shannon diversity of both bacteria and fungi significantly increased in the 25-year-old stand, while the abundance-based coverage estimator of bacteria increased significantly in the 40-year-old stand. Nitrogen addition enhanced the relative abundance of Bacteroidetes in the 40-year-old stand and that of Acidobacteria/Zygomycota in the 25-year-old stand. In contrast, the relative abundance of Thaumarchaeota was reduced by nitrogen addition in the 40-year old stand. The effects of nitrogen addition were stronger on bacterial than on fungal community structure as indicated by the results from non-metric multidimensional scaling analysis. Moreover, the effects of nitrogen addition were stronger in the 25-year-old stand than in the 40-year-old stand. These results indicated that the effects of nitrogen addition on microbial community structure diminished over time in temperate forests on Loess Plateau, China. The stronger effects of nitrogen addition was found on the community structure of bacteria than that of fungi, and on the microbial community structure in the 25-year-old stand than in the 40-year-old stand. Our findings suggested that forest ecosystem at a certain stage (~40-year old) would be less sensitive to disturbance such as nitrogen addition than young forests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201901.025 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.
View Article and Find Full Text PDFChem Sci
January 2025
Instituto de Carboquímica (ICB-CSIC) C/Miguel Luesma Castán 4 E-50018 Zaragoza Spain
Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.
View Article and Find Full Text PDFSci Rep
January 2025
The Alan Turing Institute, London, UK.
Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry, The University of Texas at San Antonio, Texas 78249, United States. Electronic address:
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-L-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 China. Electronic address:
Non-optically active water quality parameters (NAWQPs) are essential for surface water quality assessments, although automated monitoring methods are time-consuming, include labor-intensive chemical pretreatment, and pose challenges for high spatiotemporal resolution monitoring. Advancements in spectroscopic techniques and machine learning may address these issues. We integrated ultraviolet-visible-near infrared absorption spectroscopy with physical-chemical measurements to predict total nitrogen (TN), dissolved oxygen (DO), and total phosphorus (TP) in the Yangtze River Basin, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!