Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photoelectrochemical (PEC) water splitting is a promising strategy to convert solar energy into hydrogen fuel. However, the poor bulk charge-separation ability and slow surface oxygen evolution reaction (OER) dynamics of photoelectrodes impede the performance. We construct In- and Zn/In-doped SnS nanosheet arrays through a hydrothermal method. The doping induces the simultaneous formation of an amorphous layer, S vacancies, and a gradient energy band. This leads to elevated carrier concentrations, an increased number of surface-reaction sites, accelerated surface-OER kinetics, and an enhanced bulk-carrier separation efficiency with a decreased recombination rate. This efficient doping strategy allows to manipulate the morphology, crystallinity, and band structure of photoelectrodes for an improved PEC performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201902411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!