Cyanotic congenital heart disease (CCHD), a term describing the most severe congenital heart diseases are characterized by the anatomic malformation of a right to left shunt. Although the incidence of CCHD are far less than the that of congenital heart diseases (CHD), patients with CCHD always present severe clinical features such as hypoxia, dyspnea, and heart failure. Chronic hypoxia induces hypoxemia that significantly contributes to poor prognosis in CCHD. Current studies have demonstrated that the prolyl-4-hydroxylase2 ( encoded by )/hypoxia-inducible factor-1A () pathway is a key regulator of hypoxic response. Thus, we aim to assess the associations of single polymorphisms (SNPs) of the gene and hypoxic response in CCHD. A missense variant of c.380G>C (rs1209790) was found in 46 patients (46/126), with lower hypoxia incidence and higher rate of collateral vessel formation, compared with the wild type ( < 0.05). experiments, during hypoxia, mutation reduced expression compared with the wild type, with higher , and expression levels in the mutant. No difference in HK1 expression was observed between the mutant and wild type. CCHD patients with c.380G>C showed improved response to hypoxia compared with the wild-type counterparts. The c.380G>C mutation improves hypoxic response through the pathway, which may provide a molecular mechanism for hypoxic response in CCHD. The effects of the c.380G>C mutation on CCHD prognosis deserve further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411777 | PMC |
http://dx.doi.org/10.1016/j.gendis.2018.03.003 | DOI Listing |
Pathol Res Pract
December 2024
Department of Anesthesiology, Nantong Haimen People's Hospital, Nantong 226100, China. Electronic address:
Inflammation is one of the most significant pathological changes in ischemia-reperfusion injury (IRI). Sufentanil has protective effects on IRI by reducing inflammatory responses. This study aimed to investigate the protective effects and possible mechanisms of sufentanil on renal IRI (RIRI).
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China. Electronic address:
Purpose: Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear.
View Article and Find Full Text PDFBiomaterials
January 2025
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China. Electronic address:
Immunotherapeutics against triple-negative breast cancer (TNBC) hold great promise. In this work, we provide a combination therapy for simultaneous increasing tumor immunogenicity and down-regulating programmed cell death ligand 1 (PD-L1) to boost antitumor immunity in TNBC. We prepare bis (diethyldithiocarbamate)-copper/indocyanine green nanoparticles (CuET/ICG NPs) simply in aqueous with one-pot method.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:
The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!