Background: A substantial increase in histone deacetylase 3 (HDAC3) expression is implicated in the pathological process of diabetes and stroke. However, it is unclear whether HDAC3 plays an important role in diabetes complicated with stroke. We aimed to explore the role and the potential mechanisms of HDAC3 in cerebral ischemia/reperfusion (I/R) injury in diabetic state.

Methods: Diabetic mice were subjected to 1 h ischemia, followed by 24 h reperfusion. PC12 cells were exposed to high glucose for 24 h, followed by 3 h of hypoxia and 6 h of reoxygenation (H/R). Diabetic mice received RGFP966 (the specific HDAC3 inhibitor) or vehicle 30 minutes before the middle cerebral artery occlusion (MCAO), and high glucose-incubated PC12 cells were pretreated with RGFP966 or vehicle 6 h before H/R.

Results: HDAC3 inhibition reduced the cerebral infarct volume, ameliorated pathological changes, improved the cell viability and cytotoxicity, alleviated apoptosis, attenuated oxidative stress, and enhanced autophagy in cerebral I/R injury model in diabetic state in vivo and in vitro. Furthermore, we found that the expression of HDAC3 was remarkably amplified, and the Bmal1 expression was notably decreased in diabetic mice with cerebral I/R, whereas this phenomenon was obviously reversed by RGFP966 pretreatment.

Conclusions: These results suggested that the HDAC3 was involved in the pathological process of the complex disease of diabetic stroke. Suppression of HDAC3 exerted protective effects against cerebral I/R injury in diabetic state in vivo and in vitro via the modulation of oxidative stress, apoptosis, and autophagy, which might be mediated by the upregulation of Bmal1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393870PMC
http://dx.doi.org/10.1155/2019/8520856DOI Listing

Publication Analysis

Top Keywords

diabetic mice
16
injury diabetic
12
vivo vitro
12
i/r injury
12
cerebral i/r
12
diabetic
8
hdac3
8
pathological process
8
pc12 cells
8
oxidative stress
8

Similar Publications

To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion.

View Article and Find Full Text PDF

SP1 activates AKT3 to facilitate the development of diabetic nephropathy.

J Endocrinol Invest

January 2025

Department of Endocrinology, Nanshi Hospital of Nanyang, No. 130, West Zhongzhou Road, Nanyang, 473065, China.

Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and has the complex pathogenesis. The previous study reported that protein kinase Bγ (AKT3) was involved in DN progression. Our aim was to explore the detailed mechanisms of AKT3 in DN development.

View Article and Find Full Text PDF

Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.

View Article and Find Full Text PDF

Background: Oxidative stress, which refers to an imbalance between the production of reactive oxygen/nitrogen species (ROS/RNS) and the body's antioxidant defense mechanisms, is implicated in the pathogenesis of various chronic diseases by promoting cellular damage, inflammation, and dysfunction. Numerous methods have been reported for detecting ROS/RNS in vitro and in vivo; however, detecting methods for the secondary products of the ROS/RNS reactions, particularly quasi-stable oxidized products, have been much less explored.

Method: In this report, we discovered that acetylacetone, a core moiety of curcumins, is a new scaffold for generating chemiluminescence in the presence of oxidants.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Biomed Industries, Inc., San Jose, CA, USA.

Background: NA-831 is a new drug candidate, exhibiting neuroprotection, neurogenesis and memory enhancing properties for the treatment of Alzheimer's Disease (AD). NA-931 is an analog of NA-831, regulating the homeostasis of the triple: IGF-1, GLP-1 and GIP functions for obesity.

Method: A randomized clinical trial of NA-831 was performed in 112 participants with mild and moderate AD, half received the drugs and half received placebo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!