. Xuanwei City in Yunnan province has been one of the towns with highest lung cancer mortality in China. The high content of amorphous silica in the bituminous coal from Xuanwei of Yunnan is mainly present as irregular and spherical silica nanoparticles (SiNPs). It has been reported that silica nanoparticles in bituminous coal correlated with the high incidence of lung cancer in Xuanwei. To explore the role and mechanism of SiNPs in the tumorigenesis of lung cancer in Xuanwei, human mononuclear cells (THP-1) and human bronchial epithelial cells (BEAS-2B) were cocultured in a transwell chamber. Combined with Benzo[]pyrene-7, 8-dihydrodiol-9, and 10-epoxide (BPDE), SiNPs could significantly promote the proliferation and Epithelial-Mesenchymal Transition (EMT) and inhibit apoptosis of BEAS-2B cells and induce the release of TGF- from THP-1 cells. After neutralizing TGF- with antibody, the proliferation and EMT were decreased and enhanced apoptosis of BEAS-2B cells. Furthermore, the results showed that TGF- in the sera of patients with lung adenocarcinoma in Xuanwei were significantly higher than in patients with benign pulmonary lesions in Xuanwei and those with lung adenocarcinoma in outside of Xuanwei of Yunnan. Taken together, our study found that SiNPs promoted the proliferation and EMT of BEAS-2B cells by inducing the release of TGF- from THP-1 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398060PMC
http://dx.doi.org/10.1155/2019/8231267DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
12
lung cancer
12
beas-2b cells
12
spherical silica
8
epithelial-mesenchymal transition
8
cells
8
epithelial cells
8
bituminous coal
8
xuanwei yunnan
8
cancer xuanwei
8

Similar Publications

A Comprehensive Review: Mesoporous Silica Nanoparticles Greatly Improve Pharmacological Effectiveness of Phytoconstituent in Plant Extracts.

Pharmaceuticals (Basel)

December 2024

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.

Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations.

View Article and Find Full Text PDF

EchoTilt: An Acoustofluidic Method for the Capture and Enrichment of Nanoplastics Directed Toward Drinking Water Monitoring.

Micromachines (Basel)

December 2024

Science for Life Laboratory, Department of Protein Science, Division of Nanobiotechnology, KTH Royal Institute of Technology, 171 65 Solna, Sweden.

Micro- and nanoplastics have become increasingly relevant as contaminants to be monitored due to their potential health effects and environmental impact. Nanoplastics, in particular, have been shown to be difficult to detect in drinking water, requiring new capture technologies. In this work, we applied the acoustofluidic seed particle method to capture nanoplastics in an optimized, tilted grid of silica clusters even at the high flow rate of 5 mL/min.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

We report the design and development of a novel multifunctional nanostructure, RB-AuSiO_HSA-DOX, where tri-modal cancer treatment strategies-photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy-luminescent properties and targeting are integrated into the same scaffold. It consists of a gold core with optical and thermo-plasmonic properties and is covered by a silica shell entrapping a well-known photosensitizer and luminophore, Rose Bengal (RB). The nanoparticle surface was decorated with Human Serum Albumin (HSA) through a covalent conjugation to confer its targeting abilities and as a carrier of Doxorubicin (DOX), one of the most effective anticancer drugs in clinical chemotherapy.

View Article and Find Full Text PDF

In this article, we report on the research on the synthesis of composites based on a porous, highly ordered silica material modified by a metallic nanophase and chitosan biofilm. Due to the ordered pore system of the SBA-15 silica, this material proved to be a good carrier for both the biologically active nanophase (highly dispersed silver nanoparticles, AgNPs) and the adsorption active phase (chitosan). The antimicrobial susceptibility was determined against Gram-positive ATCC 25923, Gram-negative bacterial strains ( ATCC 25922, ATCC 700603, and ATCC 27853), and yeast ATCC 90028.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!