A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interplay between heat shock proteins, inflammation and cancer: a potential cancer therapeutic target. | LitMetric

Interplay between heat shock proteins, inflammation and cancer: a potential cancer therapeutic target.

Am J Cancer Res

Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand KwaDlangezwa 3886, South Africa.

Published: February 2019

The historical relationship between cancer and inflammation has long been evaluated, and dates back to the early work of Virchow (1863), where he hypothesised that chronic inflammation as a direct cause of tissue injury and infection, could actually promote tissue proliferation. At that period in time however, the exact mechanisms that mediated this relationship were little understood. Subsequent studies have since then demonstrated that chronic inflammation plays significant roles in microenvironments, mostly in the progression of tumours, probably, through over-secretion of proinflammatory cytokines and other immune-killing apparatus such as reactive oxygen species (ROS) which cause damage to normal cells leading to DNA damage and increased cellular mutation rates. Recently, the identification of DNA lesion 5-chlorocytosine (5-CIC) created by hypochlorous acid (HOCl) secreted to nullify or kill infectious agents and toll-like receptor 4 (TLR4)-mediated chronic inflammation in the human gut, has become the latest evidence linking inflammation directly to cancer. The key to cellular survival and adaptation under unfavourable or pathological conditions is the expression of heat shock proteins (HSPs) also called molecular chaperones. These proteins play essential roles in DNA repair processes by maintaining membrane integrity, orderliness and stability of client proteins that play prominent roles in DNA repair mechanisms. More so, HSPs have also been shown to modulate the effects of pro-inflammatory/apoptotic cytokines through the inhibition of cascades leading to the generation of ROS-mediated DNA damage, while promoting the DNA repair mechanism, thus playing prominent roles in various stages of DNA repair and cancer progression. Hence, studies targeting HSPs and their inhibitors in inflammation, DNA damage, and repair, could improve current cancer therapeutic efficiency. Here the focus will be on the relationship between HSPs, inflammation and cancer, as well as roles of HSPs in DNA damage response (DDR).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405974PMC

Publication Analysis

Top Keywords

dna damage
16
dna repair
16
chronic inflammation
12
dna
9
heat shock
8
shock proteins
8
inflammation
8
inflammation cancer
8
cancer therapeutic
8
proteins play
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!