Gap junctions (GJs), which are important plasma membrane channels for the transfer of signaling molecules between adjacent cells, have been implicated in drug-induced liver injury. However, the influence and the underlying mechanisms of GJs in propylthiouracil (PTU)-induced hepatotoxicity are unclear. In the present study, distinct manipulations were performed to regulate GJ function in the BRL-3A rat liver cell line. The results indicated that the toxic effect of PTU in BRL-3A cells was mediated by GJ intercellular communication, as cell death was significantly attenuated in the absence of functional GJ channels. Furthermore, the specific knockdown of connexin-32 (Cx32; a major GJ component protein in hepatocytes) using small interfering RNA was observed to decrease necrosis, intracellular PTU content and the level of reactive oxygen species (ROS) following PTU exposure. These observations demonstrated that suppressing GJ Cx32 could confer protection against PTU-induced cytotoxicity through decreasing the accumulation of PTU and ROS. To the best of our knowledge, the present study is the first to demonstrate the role and possible underlying mechanisms of GJs in the regulation of PTU-induced toxicity in BRL-3A rat liver cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425232 | PMC |
http://dx.doi.org/10.3892/etm.2019.7244 | DOI Listing |
Background: Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in ACM have greatly reduced electrical coupling at gap junctions and reduced Na current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced.
View Article and Find Full Text PDFBackground: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:
The term "circadian rhythm" refers to the 24-hour oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Google Quantum AI, Santa Barbara, California 93117, USA.
Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!