Introduction: Carbonyls, a class of compounds strongly linked to pulmonary disease in smokers, are probably the most reported non-nicotine toxicants found aerosols. Reported emissions vary from negligible quantities to those far exceeding combustible cigarettes. Observations of high emissions are commonly attributed to "dry puffing", whereby the ECIG heating filament runs dry of liquid and reaches temperatures that induce thermal degradation of the ECIG vapor components at the filament's metal surface. Using a pyrolysis flow reactor, in this study we examined the potential role of surface chemistry in the formation of carbonyl compounds in ECIGs, and whether the different commercially available filament materials could potentially impact their toxicant emissions through catalysis. This information could inform nascent efforts to regulate the design of ECIGs for public health ends.

Methods: Nitrogen or air saturated with propylene glycol vapor was drawn through a temperature and residence time controlled tubular quartz pyrolysis flow reactor in which nichrome, Kanthal, or stainless steel ECIG heating filament wires were inserted. A control condition with no inserted wire was also included. Concentrations of carbonyl products at the reactor outlet were measured as a function of temperature, heating filament wire material, and carrier gas composition (N2 vs air). Carbonyls were sampled using DNPH cartridges and analyzed by HPLC.

Results: ECIG heating filament wires were found to have a strong catalytic effect. Carbonyl formation initiated at temperatures lower than 250°C in the presence of the metallic wires, compared to 460°C without them. Carbonyl formation was found to be a function of the material of construction, and whether the wire was new or aged. New nichrome wires were the least reactive, but when aged they exhibited the highest reactivity. Carbonyls were formed via dehydration or oxidation reactions of PG.

Conclusions: Carbonyl formation chemistry is catalyzed by commonly used ECIG heating filament materials, at temperatures that are well below those expected during "dry puffing". The variability in the distribution and yield of carbonyl compounds across ECIG filament materials suggests that this heretofore unaccounted variable may partially explain the wide ranges reported in the literature to date. More importantly, it suggests that ECIG construction materials may be an important variable for regulations designed to protect public health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428435PMC
http://dx.doi.org/10.1016/j.jaap.2018.07.019DOI Listing

Publication Analysis

Top Keywords

heating filament
20
ecig heating
16
filament materials
12
carbonyl formation
12
surface chemistry
8
propylene glycol
8
"dry puffing"
8
pyrolysis flow
8
flow reactor
8
carbonyl compounds
8

Similar Publications

A simple cavity-enhanced laser-based heater for reflective samples.

Rev Sci Instrum

January 2025

Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany.

Surface science instruments require excellent vacuum to ensure surface cleanliness; they also require control of sample temperature, both to clean the surface of contaminants and to control reaction rates at the surface, for example, for molecular beam epitaxy and studies of heterogeneous catalysis. Standard approaches to sample heating within high vacuum chambers involve passing current through filaments of refractory metals, which then heat the sample by convective, radiative, or electron bombardment induced heat transfer. Such hot filament methods lead to outgassing of molecules from neighboring materials that are inadvertently heated; they also produce electrons and ions that may interfere with other aspects of the surface science experiment.

View Article and Find Full Text PDF

Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used.

View Article and Find Full Text PDF

The role of disulfide bonds in L-arginine ameliorating the quality of low-salt sturgeon surimi gels induced by microwave: Increasing the diameter and fractal dimension of network.

Food Res Int

February 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Quanzhou Marine Biotechnology Industry Research Institute, Quanzhou 362700, China. Electronic address:

The purpose of this study was to investigate the mechanism of enhancing gelling properties of low-salt surimi by utilizing the complementary advantages of L-arginine (L-Arg) and microwave (MW) from the perspective of gels' network characteristics. At MW 3 min, the diameters of protein filaments were increased from 0.015 μm to 0.

View Article and Find Full Text PDF

Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.

View Article and Find Full Text PDF

Performance Restoration of Chemically Recycled Carbon Fibres Through Surface Modification with Sizing.

Polymers (Basel)

December 2024

Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.

The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!