Bayesian variable selection often assumes normality, but the effects of model misspecification are not sufficiently understood. There are sound reasons behind this assumption, particularly for large : ease of interpretation, analytical and computational convenience. More flexible frameworks exist, including semi- or non-parametric models, often at the cost of some tractability. We propose a simple extension that allows for skewness and thicker-than-normal tails but preserves tractability. It leads to easy interpretation and a log-concave likelihood that facilitates optimization and integration. We characterize asymptotically parameter estimation and Bayes factor rates, under certain model misspecification. Under suitable conditions misspecified Bayes factors induce sparsity at the same rates than under the correct model. However, the rates to detect signal change by an exponential factor, often reducing sensitivity. These deficiencies can be ameliorated by inferring the error distribution, a simple strategy that can improve inference substantially. Our work focuses on the likelihood and can be combined with any likelihood penalty or prior, but here we focus on non-local priors to induce extra sparsity and ameliorate finite-sample effects caused by misspecification. We show the importance of considering the likelihood rather than solely the prior, for Bayesian variable selection. The methodology is in R package 'mombf'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426142PMC
http://dx.doi.org/10.1080/01621459.2017.1371025DOI Listing

Publication Analysis

Top Keywords

bayesian variable
12
variable selection
12
model misspecification
8
tractable bayesian
4
selection normality
4
normality bayesian
4
selection assumes
4
assumes normality
4
normality effects
4
effects model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!