Cardiomyocyte mitochondrial dysfunction in diabetes and its contribution in cardiac arrhythmogenesis.

Mitochondrion

Internal Medicine 3, Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100 Padova, Italy. Electronic address:

Published: May 2019

Cardiovascular disease is the leading cause of diabetes-related morbidity and mortality. It is widely accepted that heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Mitochondria are the center of fatty acid (FA) and glucose metabolism and thus are likely to be impacted by impaired metabolism associated with diabetes. Although the cause of this increased heart failure risk is multifactorial, increasing evidence points toward a crucial role for cardiomyocyte mitochondria dysfunction. Altered energy metabolism, defects in mitochondrial dynamics, increased oxidative stress, impaired calcium (Ca) handling and mitochondria-induced cell death are observed in mitochondria of diabetic myocardium. In addition, mitochondrial dysfunction appears to contribute substantially to the origin of arrhythmias in diabetic hearts. The current review will describe these mitochondrial abnormalities in cardiomyocytes attempting to provide an overview of underlying mechanisms. Finally, we briefly discuss the potential link between mitochondrial malfunction and arrhythmogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2019.03.005DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
8
heart failure
8
failure risk
8
cardiomyocyte mitochondrial
4
dysfunction diabetes
4
diabetes contribution
4
contribution cardiac
4
cardiac arrhythmogenesis
4
arrhythmogenesis cardiovascular
4
cardiovascular disease
4

Similar Publications

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP-induced SK-N-SH cells by targeting HDAC4/JNK pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.

Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.

View Article and Find Full Text PDF

O: BJECTIVES: Circular RNAs (circRNAs) are known to be associated with the progression of gestational diabetes mellitus (GDM). Thus, the objective of this study was to unveil the influnce and potential mechanism of hsa_circ_0002768 in GDM. M: ATERIAL AND: METHODS: Levels of hsa_circ_0002768 were quantified by RT-qPCR.

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!