The aim of this research study was to understand the mechanism of action of Salvia officinalis (Lamiaceae) essential oil (EO) on Aedes aegypti larvae. We evaluated the effect on DNA damage, acetylcholinesterase (AChE) inhibition and mitochondrial enzymatic alterations. The major components were analyzed in silico using OSIRIS and Molispiration free software. Aedes aegypti DNA was extracted from mosquito larvae between third (L3) and fourth (L4) instars to determine the DNA fragmentation or degradation at S. officinalis EO lethal concentrations (LC, LC, LC, and LC). DNA integrity was assessed in both LCs in larvae treated for 24 h and in larvae homogenized with EO; we also assessed purified DNA larvae by a densitometric analysis. The AChE inhibition was quantified in protein larvae L3-L4 following Ellman's method and the enzymatic activities related to the mitochondrial respiratory chain of mitochondrial proteins was estimated by spectrophotometry. In silico analysis of 1,8-cineol and of α-thujone, major EO components, showed that they were highly permeable in biological membranes without mutagenic risks. Alterations in the integrity of DNA were observed in larvae exposed and homogenized with S. officinalis EO. The EO induced an AChE inhibition of 37 ± 2.6% to IC. On the other hand, mitochondrial bioenergetics suggest that EO inhibits electrons entry to the respiratory chain, via Complex II. AChE activity alteration causes mortality of individuals, by blocking the insect cholinergic functions. These results indicate that EO affects the integrity of DNA, the mitochondrial respiration chain and the AChE activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2019.03.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!