Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction.

Eur J Pharm Biopharm

University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria; Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria. Electronic address:

Published: June 2019

The development of lipid nanoparticles requires knowledge on the crystalline structure, polymorphic transitions and lipid-drug interactions. This study aimed at introducing advanced techniques to characterize nanostructured lipid carriers (NLC) comprising palmitic acid, oleic acid, stabilizer and Domperidone. Crystallinity of single components and mixtures was investigated by laboratory Small Angle X-ray Scattering (SAXS). NLC were studied with laboratory Small and Wide Angle X-ray Scattering (SWAXS). Photon Correlation Spectroscopy and Freeze Fracture Transmission Electron Microscopy were used to monitor particle size, zeta potential and shape. Stability of NLC was investigated using synchrotron X-ray Diffraction (XRD) and SAXS and laboratory SAXS. Palmitic acid showed a lamellar structure (polymorph C), which was still present after particle preparation. Spherical 300 nm-sized particles with zeta potential values above -30 mV were obtained and Domperidone was incorporated in its amorphous form. During storage, no differences in synchrotron XRD spectra were seen. However, laboratory SAXS measurements showed a second lamellar structure, identified as polymorph B. Synchrotron SAXS temperature scans confirmed that polymorph B did not affect the morphology of the encapsulated drug or the shape of NLC. These results highlight the unique capabilities of laboratory and synchrotron X-ray Scattering and Diffraction for improved structural characterization of lipid nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2019.03.017DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
16
synchrotron x-ray
12
nanostructured lipid
8
lipid carriers
8
laboratory synchrotron
8
scattering diffraction
8
lipid nanoparticles
8
palmitic acid
8
laboratory small
8
angle x-ray
8

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Development of an image quality evaluation system for bedside chest X-ray images using scatter correction processing.

Radiol Phys Technol

January 2025

Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa, Tokyo, 116-8551, Japan.

In plain radiography, scattered X-ray correction processing (Virtual Grid: VG) is used to estimate and correct scattered rays in images. We developed an objective evaluation system for bedside chest X-ray images using VG and investigated its usefulness. First, we trained the blind/referenceless image spatial quality evaluator (BRISQUE) on 200 images obtained by portable chest radiography.

View Article and Find Full Text PDF

Polydopamine Coated Nonspherical Magnetic Nanocluster for Synergistic Dual Magneto-Photothermal Cancer Therapy.

Polymers (Basel)

December 2024

NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain.

Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed.

View Article and Find Full Text PDF

Structural Changes in Semi-Crystalline Ethylene-Based Ionomers During the Heating Process.

Polymers (Basel)

December 2024

Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.

Article Synopsis
  • The study explored how different ionic groups in ethylene-based ionomers affect their behavior when heated, focusing on carboxylic acid groups neutralized by Zn and Na ions.
  • Differential scanning calorimetry (DSC) showed two endothermic peaks during heating, with the best melting enthalpy occurring at specific Na/Zn ratios, indicating optimal crystallite growth with both ions.
  • X-ray scattering techniques revealed temperature-dependent phase transitions of the crystals, and expansions of ionic aggregates were linked to the melting of polyethylene crystals, highlighting the relationship between ionic composition, microstructure, and thermal properties.
View Article and Find Full Text PDF

This work aimed to investigate the adsorption of organic compounds (4-nitroaniline and 4-chlorophenoxyacetic acid) on activated carbon in the presence of selected dyes (uranine and Acid Red 88) and surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide). The adsorbent, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!