Characterization of controlled release formulations used for intra-articular (IA) drug administration is challenging. Bio-relevant synovial fluids (BSF), containing physiologically relevant amounts of hyaluronic acid, phospholipids and proteins, were recently proposed to simulate healthy and osteoarthritic conditions. This work aims to evaluate the performance of different controlled release formulations of methylprednisolone (MP) for IA administration, under healthy and disease states simulated conditions. Microspheres differed in grade of poly(lactide-co-glycolide) and in the theoretical drug content (i.e. 23 or 30% w/w). Their performance was compared with the commercially available suspension of MP acetate (MPA). Under osteoarthritic state simulated condition, proteins increased the MPA release and reduced the MPA hydrolysis rate, over 48 h. Regarding microspheres, the release patterns over 40 days were significantly influenced by the composition of BSF. The pattern of the release mechanism and the amount released was affected by the presence of proteins. Protein concentration affected the release and the concentration used is critical, particularly given the relevance of the concentrations to target patient populations, i.e. patients with osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2019.03.019 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
A soybean protein isolate (SPI)-based hydrogel with controllable properties was prepared under mild conditions using a simple mixing method with dialdehyde sodium alginate (DSA) as an eco-friendly macromolecular crosslinker. DSA was successfully synthesized via periodate oxidation. Analysis of the structure of the SPI/DSA hydrogel indicated that a 3D network was formed between SPI and DSA through dynamic imine and hydrogen bonds.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, US.
The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066 India.
Cellulosic nanomaterials have significantly promoted the development of sensing devices, drug delivery, and bioreactor processes. Their synthetic flexibility makes them a prominent choice for immobilizing biomolecules or cells. In this work, we developed a practical and user-friendly approach to accessing cellulose nanoparticles (CNPs).
View Article and Find Full Text PDFJ Control Release
January 2025
Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel. Electronic address:
In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I present a personal perspective on the complexities of cancer nanomedicine and the approaches to master them. This oration draws mainly from my lab's journey to explore three transformative approaches to master complexities in the field: (1) leveraging text mining to construct dynamic knowledge bases for hypothesis generation in cell-specific drug delivery, (2) introducing the concept of meta-synergy to further optimize and classify multi-drug combinations across dimensions such as chemical loading, pharmacodynamics, and pharmacokinetics (3) utilizing automation to accelerate nanoparticle discovery with advanced screening methodologies such as aggregation-induced emission (AIE). I argue that by embracing complexity in nanomedicine, we can manifest new therapeutic possibilities, paving the way for more effective, precise, and adaptive treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!