Optimal cell performance depends on cell size and the appropriate relative size, i.e., scaling, of the nucleus. How nuclear scaling is regulated and contributes to cell function is poorly understood, especially in skeletal muscle fibers, which are among the largest cells, containing hundreds of nuclei. Here, we present a Drosophila in vivo system to analyze nuclear scaling in whole multinucleated muscle fibers, genetically manipulate individual components, and assess muscle function. Despite precise global coordination, we find that individual nuclei within a myofiber establish different local scaling relationships by adjusting their size and synthetic activity in correlation with positional or spatial cues. While myonuclei exhibit compensatory potential, even minor changes in global nuclear size scaling correlate with reduced muscle function. Our study provides the first comprehensive approach to unraveling the intrinsic regulation of size in multinucleated muscle fibers. These insights to muscle cell biology will accelerate the development of interventions for muscle diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464369 | PMC |
http://dx.doi.org/10.1016/j.devcel.2019.02.020 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia.
The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan.
Chronic neuromuscular inactivity induces capillary regression within skeletal muscle. The objective of this study was to investigate the potential effects of dietary nucleic acids in counteracting the capillary reduction linked to chronic neuromuscular inactivity in the soleus muscle. The study utilized four distinct groups of female Wistar rats: a control group (CON), a hindlimb-unloading group (HU), an HU group supplemented with DNA (HU + DNA), and an HU group supplemented with RNA (HU + RNA).
View Article and Find Full Text PDFCells
December 2024
Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.
View Article and Find Full Text PDFCells
December 2024
Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
The myosin light chains (MLCs) of non-muscle myosin II are known to regulate cellular architecture and generate cellular forces; they also have an increasingly emerging role in the progression of cancer. The phosphorylation state of the myosin light chains controls the activity of myosins that are implicated in invasion and proliferation. In cancers, when proliferation is greatly increased, cytokinesis relies on phosphorylated light chains to activate the contractile forces used to separate the cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!