A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cost and benefits of clustered regularly interspaced short palindromic repeats spacer acquisition. | LitMetric

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-mediated immunity in bacteria allows bacterial populations to protect themselves against pathogens. However, it also exposes them to the dangers of auto-immunity by developing protection that targets its own genome. Using a simple model of the coupled dynamics of phage and bacterial populations, we explore how acquisition rates affect the probability of the bacterial colony going extinct. We find that the optimal strategy depends on the initial population sizes of both viruses and bacteria. Additionally, certain combinations of acquisition and dynamical rates and initial population sizes guarantee protection, owing to a dynamical balance between the evolving population sizes, without relying on acquisition of viral spacers. Outside this regime, the high cost of auto-immunity limits the acquisition rate. We discuss these optimal strategies that minimize the probability of the colony going extinct in terms of recent experiments. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452266PMC
http://dx.doi.org/10.1098/rstb.2018.0095DOI Listing

Publication Analysis

Top Keywords

population sizes
12
clustered regularly
8
regularly interspaced
8
interspaced short
8
short palindromic
8
palindromic repeats
8
bacterial populations
8
colony going
8
going extinct
8
initial population
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!