Kluyveromyces marxianus is a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. Unlike Saccharomyces cerevisiae, K. marxianus grows on low-cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluated K. marxianus for the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2-pyrone synthase (2-PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high-stability 2-PS mutant and a promoter substitution increased titer four-fold. 2-PS expression from a multi-copy pKD1-based plasmid improved TAL titers a further five-fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed-batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26976DOI Listing

Publication Analysis

Top Keywords

synthesis polyketides
8
thermotolerant yeast
8
kluyveromyces marxianus
8
polyketides low
4
low cost
4
cost substrates
4
substrates thermotolerant
4
yeast kluyveromyces
4
marxianus
4
marxianus kluyveromyces
4

Similar Publications

Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .

View Article and Find Full Text PDF

The history of the Croatian pharmaceutical company PLIVA from the very beginning to the status of a recognisable European and global player is described. Special attention is paid to PLIVA's cooperation with the Croatian Nobel laureate Vladimir Prelog and the invention of the proprietary antibiotic azithromycin. The antibiotic was commercialised in cooperation with the US-based company Pfizer.

View Article and Find Full Text PDF

Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.

Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.

View Article and Find Full Text PDF

Complete genome sequence of the marine mangrove fungus Sarcopodium sp.QM3-1 confirmed its high potential for antimicrobial activity.

Mar Genomics

March 2025

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.

View Article and Find Full Text PDF

Metabolic Blockade-Based Genome Mining of SDU050: Discovery of Diverse Secondary Metabolites.

Mar Drugs

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type SDU050, alongside five additional metabolite classes, including three novel cytochalasins (-), obtained from a mutant strain through the metabolic blockade strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!