The development of new antihyperlipidemic agents with higher potency and lower side effects is of high priority. In this study, 1,3,4 thiadiazole Schiff base derivatives were synthesized as potential peroxisome proliferation-activated receptor-α (PPARα) agonists and characterized using elemental analysis, FTIR, H-NMR, C-NMR and mass spectroscopy and then tested for their hypolipidemic activity in Triton WR-1339-induced acute hyperlipidemic rat model in comparison with bezafibrate. The compounds showed significant hypolipidemic activity. Induced fit docking showed that the compounds are potential activators of PPARα with binding scores - 8.00 Kcal/mol for 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole. PCR array analysis showed an increase in the expression of several genes involved in lipid metabolism through mitochondrial fatty acid β oxidation and are part of PPARα signaling pathway including Acsm3, Fabp4 and Hmgcs1. Gene expression of Lrp12 and Lrp1b involved in LDL uptake by liver cells and Cyp7a1 involved in cholesterol catabolism were also found to be upregulated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-019-03528-5DOI Listing

Publication Analysis

Top Keywords

potential peroxisome
8
peroxisome proliferation-activated
8
proliferation-activated receptor-α
8
acute hyperlipidemic
8
hyperlipidemic rat
8
rat model
8
hypolipidemic activity
8
hypolipidemic novel
4
novel 25-bis4-hydroxybenzylidenamino-134-thiadiazole
4
25-bis4-hydroxybenzylidenamino-134-thiadiazole potential
4

Similar Publications

Background: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.

Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.

View Article and Find Full Text PDF

The role of PPAR in fungal keratitis.

Front Immunol

December 2024

Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.

The treatment of fungal keratitis(FK) remains challenging due to delayed fungal detection and the limited effectiveness of antifungal drugs. Fungal infection can activate both innate and adaptive immune responses in the cornea. Fungi stimulate the production of oxidative stress-related biomarkers and mediate the infiltration of neutrophils, macrophages, and T cells.

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Capsicum oleoresin (CO) is a concentrated extract derived from peppers ( L.) containing capsaicin (the active compound responsible for its pungency) and other bioactive components. The present study aimed to determine whether CO affects the energy expenditure and mitochondrial content of brown adipose tissue (BAT) in diet-induced obese mice.

View Article and Find Full Text PDF

The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!