Maternal high fat high sugar diet disrupts olfactory behavior but not mucosa sensitivity in the offspring.

Psychoneuroendocrinology

Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France. Electronic address:

Published: June 2019

AI Article Synopsis

Article Abstract

The influence of maternal diet on progeny's metabolic health has been thoroughly investigated, but the impact on sensory systems remains unexplored. Neurons of the olfactory system start to develop during the embryonic life and carry on their maturation after birth. Besides, these neurons are under metabolic influences, and it has recently been shown that adult mice exposed to an obesogenic or diabetogenic diet display reduced olfactory abilities. However, whether or not Folfactory function is affected by the perinatal nutritional environment is unknown. Here we investigated the effect of a high fat high sucrose (HFHS) maternal diet (46% of total energy brought by lipids, 26.6% by sucrose) on progeny's olfactory system in mice. In male offspring at weaning stage, maternal HFHS diet induced overweight and increased gonadal fat, associated with hyperleptinemia. The progeny of HFHS diet fed dams showed reduced sniffing behavior in the presence of low doses of phenylethanol (an attractive odorant for mice), compared to the progeny of standard diet fed dams. Furthermore, they exhibited increased time to retrieve a piece of breakfast cereals hidden beneath the bedding in a buried food test. Meanwhile, electroolfactogram recordings revealed no change in the sensitivity of olfactory mucosa. mRNA levels for elements of the olfactory transduction cascade were not affected either. Our results demonstrate that maternal HFHS diet during gestation and lactation strongly modulates olfactory perception in the offspring, without impairing odor detection by the olfactory epithelium. Maternal HFHS diet starting two months before gestation did not induce additional impairments in progeny.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2019.02.005DOI Listing

Publication Analysis

Top Keywords

hfhs diet
16
maternal hfhs
12
diet
9
high fat
8
fat high
8
olfactory
8
maternal diet
8
olfactory system
8
diet fed
8
fed dams
8

Similar Publications

People in Eastern Asia, including Japan, traditionally consume higher amounts of sodium chloride than in the United States and Western Europe, and it is common knowledge that impaired insulin secretion-rather than insulin resistance-is highly prevalent in Asian people who have diabetes mellitus. We previously reported that mice fed a high-fat and high-sodium chloride (HFHS) diet had a relatively lower degree of obesity than mice fed a high-fat diet, but had a comparatively impaired insulin secretion. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been shown to dampen down the sympathetic nervous system, which reportedly is activated by a high-sodium chloride diet.

View Article and Find Full Text PDF

Context: The obesity epidemic parallels an increasing type 1 diabetes incidence, such that westernized diets, containing high fat, sugar and/or protein, through inducing nutrient-induced islet beta-cell stress, have been proposed as contributing factors. The broad-spectrum neutral amino acid transporter (B0AT1), encoded by Slc6a19, is the major neutral amino acids transporter in intestine and kidney. B0AT1 deficiency in C567Bl/6J mice, causes aminoaciduria, lowers insulinemia and improves glucose tolerance.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a complex endocrine-metabolic disorder, and multiple factors contribute to its pathophysiology. The current study assessed a PCOS-like animal model induced by consuming a high-fat sugar (HFHS) diet and compared the treatment outcome of mitochondrial-targeted antioxidants versus heat therapy. Sixty rats were divided into the following study groups: three control groups (negative and positive for the treatments used), HFHS, hot tub therapy (HTT) treatment, and MitoQ10 treatment (500 µmol/L MitoQ10 in clean drinking water daily, from week fourteen till week twenty-two of the study).

View Article and Find Full Text PDF

Obesity is a global public health issue linked to various comorbidities in both humans and animals. This study investigated the effects of vitamin D (VD) and omega-3 fatty acids (ω3FA) on obesity, gut dysbiosis, and metabolic alterations in Wistar rats. After 13 weeks on a standard (S) or High-Fat, High-Sugar (HFHS) diet, the rats received VD, ω3FA, a combination (VD/ω3), or a control (C) for another 13 weeks.

View Article and Find Full Text PDF

A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes.

Life Sci

February 2025

Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:

Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!