Monitoring and control strategies for inclusion body production in E. coli based on glycerol consumption.

J Biotechnol

Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria; Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.

Published: April 2019

The Gram-negative bacterium E. coli is the host of choice for the production of a multitude of recombinant proteins in industry. Generally, cultivation is easy, media are cheap and a high product titer can be obtained. However, harsh induction procedures using IPTG as inducer are often referred to cause stress reactions, leading to a phenomenon known as metabolic burden and expression of inclusion bodies. In this contribution, we present different strategies for determination of critical timepoints for product stability in an E. coli IB bioprocess. As non-controlled feeding during induction regularly led to undesired product loss, we applied physiological feeding control. We found that the feeding strategy has indeed high impact on IB productivity. However, high applied q increased IB product titer, but subsequently stressed the cells and finally led to product degradation. Calculating the cumulated glycerol uptake of the cells during induction phase (dSn), we found an empirical value, which serves as a strong indicator for process performance and can be used as process analytical tool. We tested different approaches starting from offline control. Glycerol accumulation could be used as trigger to establish a model-based approach to predict titer and viable cell concentration for a model protein. This straight forward control and model-based approach is high beneficial for upstream development and for increasing stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2019.03.014DOI Listing

Publication Analysis

Top Keywords

product titer
8
model-based approach
8
product
5
monitoring control
4
control strategies
4
strategies inclusion
4
inclusion body
4
body production
4
production coli
4
coli based
4

Similar Publications

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Construction of Escherichia coli cell factory for efficient synthesis of indigo.

Chembiochem

January 2025

Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.

Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.

View Article and Find Full Text PDF

Continuous Production of Influenza VLPs Using IC-BEVS and Multi-Stage Bioreactors.

Biotechnol Bioeng

January 2025

Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.

The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.

View Article and Find Full Text PDF

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

Construction of a Vero cell line expression human KREMEN1 for the development of CVA6 vaccines.

Virol J

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.

Coxsackievirus A6 (CVA6) has emerged as a major pathogen causing hand, foot and mouth disease (HFMD) outbreaks worldwide. The CVA6 epidemic poses a new challenge in HFMD control since there is currently no vaccine available against CVA6 infections. The Vero cell line has been widely used in vaccine production, particularly in the preparation of viral vaccines, including poliovirus vaccines and EV71 vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!