Degradation of methyl orange and congo red by using chitosan/polyvinyl alcohol/TiO electrospun nanofibrous membrane.

Int J Biol Macromol

Center of Advanced Material, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.. Electronic address:

Published: June 2019

In this study, chitosan/polyvinyl alcohol/TiO nanofiber was fabricated via electrospinning at a pump rate of 1.5 mL/h and voltage 6 kV. Field-emission scanning electron microscopic images showed bead free finer nanofiber. Fourier transform infrared spectra proved the formation of strong bond among chitosan, polyvinyl alcohol and TiO. X-ray powder diffraction showed that TiO became amorphous in the composite nanofiber. Toughness and thermal stability of the chitosan/PVA nanofibrous membrane was increased with addition TiO. The chitosan/PVA/TiO nanofibrous membrane was stable at basic medium. But degraded in acidic and water medium after 93 and 162 h, respectively. The adsorption mechanism of congo red obeyed the Langmuir isotherm model. On the other hand, adsorption characteristic of methyl orange fitted well with both Langmuir and Freundlich isotherm models. The maximum adsorption capacity of the resulting membrane for congo red and methyl orange is 131 and 314 mg/g, respectively. However, a high dose of adsorbent was required for congo red.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.03.132DOI Listing

Publication Analysis

Top Keywords

congo red
16
methyl orange
12
nanofibrous membrane
12
chitosan/polyvinyl alcohol/tio
8
degradation methyl
4
congo
4
orange congo
4
red
4
red chitosan/polyvinyl
4
alcohol/tio electrospun
4

Similar Publications

This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.

View Article and Find Full Text PDF

In this research, the degradation of Congo red (CR) dye, as an organic pollutant in water, was investigated using microwave-induced reaction technology. This technology requires a microwave-absorbing catalyst and the 2D TiCT MXene was synthesized for that purpose. The synthesized catalyst was characterized using XRD, SEM, TEM, EDX, BET, and XPS techniques.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is one of the leading causes of death among seniors in the United States and costs the nation over $300 billion each year. Neuropathologically, AD is characterized by neuronal loss, Aβ deposits in the form of plaques, and intracellular aggregates of tau protein in the form of neurofibrillary tangles (NFT). The amyloid cascade hypothesis, one of the leading hypotheses of AD pathogenesis, suggests that Aβ aggregates are directly neurotoxic, triggering downstream neurodegeneration.

View Article and Find Full Text PDF

Background: UK Biobank data show mutations related to the iron disorder hemochromatosis can approximately double the risk of dementia, in particular clinically diagnosed vascular dementia. Insights into the etiology of this dementia may be provided by cerebrovasculopathy in our new "Aβ+Iron" mouse model, which combines hemochromatosis-related mutations and amyloidosis, with increases in soluble Aβ species and plaques. This was created by crossing an established APP/PS1 model of β-amyloidosis with our reported HfexTfr2 model of hemochromatosis-related mutations exhibiting brain iron dyshomeostasis (Heidari Mol.

View Article and Find Full Text PDF

Background: Sleep deprivation leads to an increase in oxidative stress and activation of inflammatory response and both could increase the production and accumulation of toxic beta-amyloid in the hippocampus which is considered one of the molecular drivers of Alzheimer's pathogenesis and progression. Despite these findings, obtaining sleep is still challenging in our modern society that values work around the clock. Omega-3 fatty acids represents an active biological agent with vital antioxidant and anti-inflammatory activities that could protect memory in the face of insufficient sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!