Exploiting structural redundancy in q-space for improved EAP reconstruction from highly undersampled (k, q)-space in DMRI.

Med Image Anal

Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, USA. Electronic address:

Published: May 2019

Accurate reconstruction of the ensemble average propagators (EAPs) from undersampled diffusion MRI (dMRI) measurements is a well-motivated, actively researched problem in the field of dMRI acquisition and analysis. A number of approaches based on compressed sensing (CS) principles have been developed for this problem, achieving a considerable acceleration in the acquisition by leveraging sparse representations of the signal. Most recent methods in literature apply undersampling techniques in the (k, q)-space for the recovery of EAP in the joint (x, r)-space. Yet, the majority of these methods follow a pipeline of first reconstructing the diffusion images in the (x, q)-space and subsequently estimating the EAPs through a 3D Fourier transform. In this work, we present a novel approach to achieve the direct reconstruction of P(x, r) from partial (k, q)-space measurements, with geometric constraints involving the parallelism of level-sets of diffusion images from proximal q-space points. By directly reconstructing P(x, r)) from (k, q)-space data, we exploit the incoherence between the 6D sensing and reconstruction domains to the fullest, which is consistent with the CS-theory. Further, our approach aims to utilize the inherent structural similarity (parallelism) of the level-sets in the diffusion images corresponding to proximally-located q-space points in a CS framework to achieve further reduction in sample complexity that could facilitate faster acquisition in dMRI. We compare the proposed method to a state-of-the-art CS based EAP reconstruction method (from joint (k, q)-space) on simulated, phantom and real dMRI data demonstrating the benefits of exploiting the structural similarity in the q-space.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2019.02.014DOI Listing

Publication Analysis

Top Keywords

diffusion images
12
q-space
10
exploiting structural
8
eap reconstruction
8
parallelism level-sets
8
level-sets diffusion
8
q-space points
8
structural similarity
8
reconstruction
5
dmri
5

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a leading cause of mortality and disability worldwide, with early and accurate diagnosis being critical for timely intervention and improved patient outcomes. This retrospective study aimed to assess the diagnostic performance of two advanced artificial intelligence (AI) models, Chat Generative Pre-trained Transformer (ChatGPT-4o) and Claude 3.5 Sonnet, in identifying AIS from diffusion-weighted imaging (DWI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!