Differentiating melanocytic hyperplasia (MH) on photodamaged skin from junctional lentiginous melanocytic proliferations (JLMP), early evolving melanoma in situ (MIS), or the periphery of a lesion of MIS on staged excision can be challenging. Although previous cross-sectional studies have elucidated important criteria for distinguishing MH on photodamaged skin from more concerning lesions, this study highlights a technique to treat JLMP and MIS with staged mapped excision and baseline scouting biopsies of adjacent nonlesional photodamaged skin to assist in determination of surgical margin clearance. Additionally, we compare the lesional and photodamaged control biopsies from the same patient to evaluate relevant histologic criteria that may be used to distinguish MH in photodamaged skin from JLMP/MIS, while minimizing confounding factors. There was a statistically significant difference (P ≤ 0.05) found for melanocyte density, irregular melanocyte distribution, melanocyte clustering, follicular infundibulum involvement, and nesting. However, criteria such as nesting, epithelioid cells and melanocyte clustering were seen in both photodamaged skin and MIS. These findings underscore the fact that histologic features of photodamaged skin can overlap with the histopathological features of MIS. Of all of the criteria evaluated, melanocytic density was the most objective histologic criterion and did not show overlap between the sun-damaged and JLMP/MIS groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cup.13462 | DOI Listing |
Lasers Surg Med
January 2025
Main Line Center for Laser Surgery, Ardmore, Pennsylvania, USA.
Background: Poikiloderma of Civatte is a benign skin condition characterized by reticulate erythema and hyperpigmentation in sun-exposed areas, predominantly on the neck, cheeks, and chest. Chronic UV exposure leads to vascular proliferation and red cell extravasation resulting in hemosiderin and melanin deposition. While many light-based modalities have been utilized to treat the disorder, the significant vascularity makes it ideally suited for treatment with vascular lasers.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2025
HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., 518000 Shenzhen, Guangdong, PR China. Electronic address:
Ultraviolet radiation (UV) causes certain side effects to the skin, and their accumulation to a certain extent can lead to accelerated aging of the skin. Recent studies suggest that α-arbutin may be useful in various disorders such as hyperpigmentation disorders, wound healing, and antioxidant activity. However, the role of α-arbutin in skin photodamage is unclear.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2025
Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea. Electronic address:
Exposure to UV irradiation results in abnormal, extensive apoptosis of skin cells. This excessive cell death can promote inflammation and alter the microenvironment, increasing the risk of skin cancer. Despite extensive research, few materials are effective at simultaneously protecting against both UVA and UVB irradiation.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC.
Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China. Electronic address:
Ultraviolet B (UVB) irradiation from sunlight is one of the primary environmental factors that causes photodamage to the skin. The aim of this study was to prepare succinyl-chitosan oligosaccharide (SU-COS) and evaluate its protective effects and related molecular mechanisms against UVB-induced photodamage for the first time. SU-COS (substitution degree: 69.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!