A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the Fate of Metal Concentrates in Surface Water. | LitMetric

Metals present in concentrates are in a solid form and are not bioavailable, but they can dissolve or potentially transform to more soluble forms. Transformation/dissolution laboratory protocols have been developed to assess the importance of dissolution of sparingly soluble metal substances in the context of hazard classification; however, these tests represent worst-case scenarios for metal bioavailability because attenuation mechanisms such as complexation, sorption, and transport to the sediment are not considered. A unit world model (UWM) for metals in lakes, tableau input coupled kinetics equilibrium transport (TICKET)-UWM, has been developed that considers key processes affecting metal transport, fate, and toxicity including complexation by aqueous inorganic and ligands, partitioning to dissolved organic carbon (DOC) and particulate organic carbon (POC), precipitation, and transport of dissolved metals and solids between the water column and sediment. The TICKET-UWM model was used to assess the fate of a metal concentrate and dissolved metal ions released from the concentrate following an instantaneous input to a generalized lake. Concentrate dissolution rates in the water column were parameterized using results from batch transformation/dissolution tests for 2 specific concentrates containing lead (Pb), copper (Cu), and cobalt (Co). The TICKET-UWM results for a generalized lake environment showed that water column concentrations of metals in the lake environment after 28 d were several orders of magnitude lower than the 28-d concentration from the transformation/dissolution tests because Pb, Cu, and Co partitioned to POC in the water column and were subsequently removed due to settling. Resuspension of sediment served to increase total metal in the water column, but the resulting concentrations were still much lower than the 28-d concentrations from the transformation/dissolution tests. Information from TICKET-UWM could be used to refine the environmental hazard profiles of metals. Environ Toxicol Chem 2019;38:1256-1272. © 2019 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4417DOI Listing

Publication Analysis

Top Keywords

water column
20
transformation/dissolution tests
12
fate metal
8
organic carbon
8
generalized lake
8
lake environment
8
column concentrations
8
lower 28-d
8
metal
7
water
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!