This study explores the climate impacts of on-road tourist transportation with alternate mitigation strategies. To this end, greenhouse gas (GHG) emissions for 2016 and emissions under four "what-if" scenarios were estimated for a popular tourist site in Pakistan, i.e., Murree Hills, using the international vehicle emissions model. Alternate scenarios included occupancy optimization, bus transit system, and Euro II and Euro IV implementation. The emissions were further decomposed using the log mean Divisia index method to study the drivers of global warming potential (GWP) mitigation. As per the results, the total 20-year GWP for 2016 was equal to 51,262 tons CO equivalent, and maximum reduction was achieved under the bus transit system scenario having a 20-year GWP of 25,736 tons CO equivalent, i.e., 49.8% reduction. Relative to the base year, GWP reductions were also quite significant for Euro IV (46.8%), Euro II (45.8%), and occupancy optimization (32.3%) scenarios. For the base year, CO held a share of 87.3% in total emissions; however, its share in the 20-year GWP was 39.7% indicating its reduced impact on total GWP as compared to NO, CO, NOx, VOC, and CH. Based on the decomposition results for alternate scenarios, GWP mitigation was mainly driven by CO, CH, NOx, VOCs, and partially by CO, while NO negatively affected GWP mitigation. These results provide several policy-level instruments for developing countries to design a transition to an eco-friendly tourist transport management system. The policy implications from this study can be used to promote an eco-tourism industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04506-6 | DOI Listing |
Sci Total Environ
January 2025
School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
Sci Total Environ
January 2025
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.
The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal Science, University of California, Davis, Davis, CA 95616.
Several metrics have developed for combining the warming effects of various greenhouse gases (GHG). The metric used can affect the life cycle assessment and comparison of dairy production systems due to the weighting placed on long- versus short-lived gases in the atmosphere. Global warming potential with a time horizon of 100 years (GWP-100) has become the standard but metrics are also available for other time horizons.
View Article and Find Full Text PDFSci Total Environ
January 2025
Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
Meeting current decarbonization targets requires a shift to a hydrogen energy nexus, yet, water is a valuable resource for hydrogen production, shifting the perspective to the use of HS instead within the context of circular economy. A comprehensive understanding of the environmental impacts, using a cradle-to-gate life cycle assessment (LCA), was developed focusing on the operation of hydrogen sulfide-methane reforming (HSMR) for H production benchmarked to conventional technologies, steam methane reforming (SMR) and SMR + carbon capture (CC), as feedstock to produce sustainable fuels (i.e.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark; CBIO, Centre for Circular Bioeconomy, Aarhus University, Denmark.
Peatlands cover 3 % of the Danish land area, but drainage of these areas contributes to approximately 25 % of the total agricultural greenhouse gas (GHG) emissions. Paludiculture, defined as agriculture on wet or rewetted peatlands, has been proposed as a strategy to mitigate GHG emissions while keeping up production. However, little is known about the net GHG effects during establishment and how it is influenced by soil biogeochemical conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!