Motivation: Non-coding rare variants (RVs) may contribute to Mendelian disorders but have been challenging to study due to small sample sizes, genetic heterogeneity and uncertainty about relevant non-coding features. Previous studies identified RVs associated with expression outliers, but varying outlier definitions were employed and no comprehensive open-source software was developed.
Results: We developed Outlier-RV Enrichment (ORE) to identify biologically-meaningful non-coding RVs. We implemented ORE combining whole-genome sequencing and cardiac RNAseq from congenital heart defect patients from the Pediatric Cardiac Genomics Consortium and deceased adults from Genotype-Tissue Expression. Use of rank-based outliers maximized sensitivity while a most extreme outlier approach maximized specificity. Rarer variants had stronger associations, suggesting they are under negative selective pressure and providing a basis for investigating their contribution to Mendelian disorders.
Availability And Implementation: ORE, source code, and documentation are available at https://pypi.python.org/pypi/ore under the MIT license.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792115 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btz202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!