The objective of this study is to report a molecularly imprinted polymer-based chemiluminescence method for determination of Sudan dyes. A dummy-template molecularly imprinted polymer capable of recognizing seven Sudan dyes was first synthesized and its recognition mechanism was studied by using computation simulation method. The polymer was coated in the wells of conventional microplate to prepare a chemiluminescence sensor and the assay process consisted of only one sample-loading step prior to signal acquisition. The optimized sensor was used to determine the seven dyes in egg yolk and the results were confirmed with a high performance liquid chromatography. Results showed that this sensor achieved ultrahigh sensitivity (1.0-5.0 pg/mL), rapid assay process (10 min) and satisfactory recovery (70.5%-92.2%). Furthermore, the sensor could be reused for 5 times. Therefore, this sensor could be used as a useful tool for screening the residues of Sudan dyes in egg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.03.031DOI Listing

Publication Analysis

Top Keywords

sudan dyes
16
molecularly imprinted
12
dyes egg
12
imprinted polymer
8
chemiluminescence sensor
8
assay process
8
sensor
6
dyes
5
dummy molecularly
4
polymer based
4

Similar Publications

Comprehensive Investigations About the Binding Interactions of Sudan Dyes with DNA by Spectroscopy and Docking Methods.

J Fluoresc

January 2025

School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224007, People's Republic of China.

Sudan dyes are recognized as carcinogens, which are strictly determined whether there are them in food for food safety. Hence, in order to understand the mechanism at the molecular level, this work investigated the binding interactions of Sudan I-IV with calfthy mus DNA. The synchronous fluorescence and UV-vis spectral results suggested the complex formation between Sudan I-IV and ct-DNA.

View Article and Find Full Text PDF

Azo food dyes are prohibited in most countries, but their injudicious use is still reported particularly in the developing Nations. Continuous use of contaminated food raises health concerns and given this the present study designed to investigate the effects of 3 non-permitted azo dyes (metanil yellow - MY, malachite green - MG, and sudan III - SIII) on neurobehavioral, neurochemicals, mitochondrial dysfunction, oxidative stress, and histopathological changes in the corpus striatum of rats. Rats were grouped and treated with MY (430 mg/kg), MG (13.

View Article and Find Full Text PDF

In this work, a new supramolecular solvent (SUPRAS) was prepared for the first time using hexafluorobutanol (HFB) and farnesol (FO). FO acts as an amphiphile and HFB as a coacervation inducer and density regulator. The method of dispersive liquid-liquid microextraction followed by high-performance liquid chromatography, supported by a vortex technique, was established using the prepared SUPRAS for the determination of Sudan dyes in aqueous samples.

View Article and Find Full Text PDF

Octylamine-oxalic acid (Oct-Oxa) deep eutectic solvent for the separation of Sudan II from food samples.

Food Chem

February 2025

Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Türkiye; Technology Research and Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; United Methodist University, The College of Natural & Applied Sciences, Monrovia, Liberia.

This work presents a novel deep eutectic solvent (DES) formed of octylamine and oxalic acid (Oct-Oxa) that was effectively used to separate Sudan II dye from food and water samples. The prepared DES was characterized using Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance (C NMR). Key parameters were optimized, including a short ultrasonication time of 30 s and a very low DES volume of only 500 μL that could be separated within one minute of centrifugation.

View Article and Find Full Text PDF

The use of chemically modified nanocomposites for atherosclerotic plaques can open up new opportunities for studying their effect on changing the structure of the plaque itself. It was shown on the model of the greater omentum of two groups of experimental animals (rats n = 30), which were implanted with Fe@C NPs nanocomposites of 10-30 Nm size into the omentum area. Group 1 (n = 15) consisted of animals that were implanted with chemically modified Fe@C NPs nanocomposites and control group 2 (n = 15) was with non-modified Fe@C NPs nanocomposites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!