Metabolite profiling and in vitro biological activities of two commercial bitter melon (Momordica charantia Linn.) cultivars.

Food Chem

Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, United States. Electronic address:

Published: August 2019

The current study was designed to characterize the metabolite profile and bioactivity of two commercial bitter melon (Momordica charantia Linn.) genotypes. UPLC-high resolution mass spectrometry (HRMS) was used to identify 15 phenolic and 46 triterpenoids in various bitter melon extracts. Total phenolic levels were the highest (57.28 ± 1.02) in methanolic extract of the inner tissue of Indian Green cultivar, which also correlated to the highest DPPH radical scavenging activity (30.48 ± 2.49 ascorbic acid equivalents (mg of AAE)/g of FD). In addition, highest levels of total saponins were observed in chloroform extract of the Chinese bitter melon pericarp (75.73 mg ± 4.67 diosgenin equivalents (DE)/g of FD). Differential inhibition of α-amylase and α-glucosidase activity was observed in response to polarity of extract, cultivar and tissue type. These results suggest that consumption of whole bitter melon may have potential health benefits to manage diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.02.120DOI Listing

Publication Analysis

Top Keywords

bitter melon
20
commercial bitter
8
melon momordica
8
momordica charantia
8
charantia linn
8
bitter
5
melon
5
metabolite profiling
4
profiling vitro
4
vitro biological
4

Similar Publications

Enhancement of health beneficial bioactivities of bitter melon (Momordica charantia L.) by puffing.

Food Chem

January 2025

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

Effects of puffing and extraction method on physical and biological efficacy of bitter melon was investigated. Puffing increased the Maillard reaction products, extraction yield, total phenolic and total flavonoid contents. Antioxidant activity was the highest at 980 kPa, but there was no significant difference between two extraction methods.

View Article and Find Full Text PDF

The objective of this study was the develop of fortified cookies enriched with oats flour and bitter gourd powder and monitoring the effects of these enrichments on the physicochemical, antioxidant, antimicrobial, and sensory attributes. This study was subjected to four treatments: control (0% oats flour and bitter gourd powder), T1 (10% oats flour), T2 (3% bitter gourd powder), and T3 (7% oats flour and 3% bitter gourd powder). Various physical properties of the cookies, including weight, thickness, diameter, spread ratio, baking loss, pH, and color values (L*, a*, and b*), were measured.

View Article and Find Full Text PDF

Background: Lipoxygenases (LOXs) are key enzymes in the unsaturated fatty acid oxidation reaction pathway and play an important regulatory role in the synthesis of fruit aroma volatiles.

Methods: gene family members were identified in the whole genome database of bitter gourd and analyzed bioinformatically. An RT-qPCR was used to analyze the expression differences in different tissues.

View Article and Find Full Text PDF

Background Chronic periodontitis is primarily caused by various bacterial species present in the plaque biofilm, which trigger a host inflammatory response. This leads to the abnormal release of inflammatory mediators such as proinflammatory cytokines (interleukin-1, interleukin-6, interleukin-8, and tumor necrosis factor-α), which are free radicals that cause alveolar bone resorption and tooth loss. ​​​ (bitter gourd) is a widely used medicinal plant for the treatment of numerous diseases such as skin infections, diabetes, metabolic disorders, and carcinomas for several decades.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 4% microalgae (MC) and fermented microalgae (FMC) affect gut bacteria and obesity in male mice, with implications for animal metabolic health.
  • Mice were divided into four diets over 12 weeks, and gut microbiome analysis showed significant changes in microbial communities for those on MC and FMC diets.
  • Results indicated that both MC and FMC could help manage metabolism-related disorders and obesity by altering gut microbiota and enhancing metabolic pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!