Monoclonal antibody-based techniques have become a useful analytical technology in the agro-food sector. Nowadays, residues of the recently registered fungicide fluopyram are increasingly being found in quality control programs. In the present study, novel chemical derivatives of this pesticide were prepared and specific and high-affinity monoclonal antibodies to fluopyram were raised for the first time. Moreover, immunoassays to fluopyram were developed in two alternative enzyme-linked immunosorbent assay formats, using homologous and heterologous assay conjugates, with limits of detection below 0.05 µg L. The optimized immunoassays were applied to the analysis of fluopyram in fortified plums and grapes of four different varieties as well as in in-house prepared musts and wines. Recoveries were between 76.3% and 109.6% and coefficients of variation were below 20%. Quantification limits were well below the maximum residue limits. Immunoassay performance was statistically validated with a reference chromatographic technique using samples from fluopyram-treated plum and grape cultivars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2019.03.007 | DOI Listing |
Anal Chem
January 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
The rapid, sensitive, and accurate detection of paralytic shellfish toxins (PSTs), such as saxitoxin (STX), is critical for protecting human health due to the frequent occurrence of toxic red tides. In this work, to address the low affinity of traditional mouse monoclonal antibodies (m-mAbs), rabbit monoclonal antibodies (r-mAbs) against STX were produced by a single B-cell sorting culture and a cross-selection strategy. The r-mAbs showed 100-fold improvement in sensitivity (IC = 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
T-cell-engaging bispecific antibodies (BiTEs), which can simultaneously bind to antigens on tumor cells and T cells, show good potential in cancer immunotherapy. A practical and feasible approach for emulating BiTEs involves immobilizing two types of monoclonal antibodies (mAbs) onto a single nanoparticle; however, this approach involves complex immobilization processes and chemical reactions. To overcome these challenges, we achieved gentle antibody immobilization through receptor-ligand interactions by constructing a mAb delivery system known as Fcγ receptor 1 (FcγR1)-expressing cell membrane-coated nanoparticles (abbreviated as FcγR1-CMNPs).
View Article and Find Full Text PDFViruses
November 2024
Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India.
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland.
Despite the great advancements in treatment strategies for hematological malignancies (HMs) over the years, their effective treatment remains challenging. Conventional treatment strategies are burdened with several serious drawbacks limiting their effectiveness and safety. Improved understanding of tumor immunobiology has provided novel anti-cancer strategies targeting selected immune response components.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:
We developed a novel DNA aptamer, D8#24S1, which specifically recognizes mertansine (DM1), the cytotoxic payload of the antibody-drug conjugate (ADC) trastuzumab emtansine (T-DM1), and applied it for T-DM1 analysis. D8#24S1 was obtained through SELEX and was shown to specifically recognize DM1 with high affinity (dissociation constant, K = 84.2 nM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!