Reduction of undesirable element leaching from fly ash by adding hydroxylated calcined dolomite.

Waste Manag

Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan. Electronic address:

Published: March 2019

Fly ash always contains many toxic elements which can be released into environment, thereby easily leading to environmental contaminations. In order to dispose fly ash safely, related strategies are needed. In this investigation, two kinds of hydroxylated calcined dolomites (HCD60 and HCD100) were used as the additives and compared with lime on the leachabilities of anionic species from fly ash. Both additives were found effective in reducing the leaching concentrations of these elements, which was better than that of only lime addition. Mg(OH) and MgO were believed to play important roles in the hydration reaction of fly ash. In the presence of Mg(OH) and MgO, there were more hydration products including calcium silicate hydrate, ettringite, hydrocalumite and other Layered double hydroxides (LDHs) generated which were effective candidates for anion removal. Thus, the final leaching results were controlled by these newly formed phases through adsorption, incorporation or encapsulation. On the other hand, compared with Mg(OH), MgO can promote the formation of hydration products in a larger extent because of the hydration process of MgO into Mg(OH). There was no systematic trend in the promotion of fly ash hydration by Mg(OH) or MgO because it had a close relationship with the properties of original fly ash. Objectively, hydroxylated calcined dolomites can be promising candidate additives for reduction of toxic elements leaching from fly ash.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.01.027DOI Listing

Publication Analysis

Top Keywords

fly ash
32
mgoh mgo
16
hydroxylated calcined
12
fly
8
leaching fly
8
ash
8
toxic elements
8
calcined dolomites
8
hydration products
8
mgoh
5

Similar Publications

The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

In the framework of sustainable development and environmental preservation, this research aims to improve the stability and frost resistance of sulfate saline soil by utilizing industrial solid waste. Geopolymer materials containing fly ash (FA) activated by different NaOH concentrations were studied for study on stabilized soil with saline soil, with NaOH concentrations used ranged from 0.1 to 0.

View Article and Find Full Text PDF

Incidental iron oxide nanoclusters drive confined Fenton-like detoxification of solid wastes towards sustainable resource recovery.

Nat Commun

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.

The unique properties of nanomaterials offer vast opportunities to advance sustainable processes. Incidental nanoparticles (INPs) represent a significant part of nanomaterials, yet their potential for sustainable applications remains largely untapped. Herein, we developed a simple strategy to harness INPs to upgrade the waste-to-resource paradigm, significantly reducing the energy consumption and greenhouse gas emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!